
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020 1625

An Operational Approach to Information Leakage
Ibrahim Issa , Aaron B. Wagner , and Sudeep Kamath

Abstract— Given two random variables X and Y , an oper-
ational approach is undertaken to quantify the “leakage” of
information from X to Y . The resulting measure L (X→Y )
is called maximal leakage, and is defined as the multiplicative
increase, upon observing Y , of the probability of correctly
guessing a randomized function of X , maximized over all such
randomized functions. A closed-form expression for L (X→Y )
is given for discrete X and Y , and it is subsequently generalized
to handle a large class of random variables. The resulting
properties are shown to be consistent with an axiomatic view
of a leakage measure, and the definition is shown to be robust
to variations in the setup. Moreover, a variant of the Shannon
cipher system is studied, in which performance of an encryption
scheme is measured using maximal leakage. A single-letter char-
acterization of the optimal limit of (normalized) maximal leakage
is derived and asymptotically-optimal encryption schemes are
demonstrated. Furthermore, the sample complexity of estimating
maximal leakage from data is characterized up to subpolynomial
factors. Finally, the guessing framework used to define maximal
leakage is used to give operational interpretations of commonly
used leakage measures, such as Shannon capacity, maximal
correlation, and local differential privacy.

Index Terms— Guessing, information leakage, security, Sibson
mutual information.

I. INTRODUCTION

H
OW much information does an observation “leak” about
a quantity on which it depends? This basic question

arises in many secrecy and privacy problems in which the
quantity of interest is considered sensitive and an observation
is available to an adversary. The observation could be inten-
tionally provided to the adversary, as occurs when a curator
publishes statistical information about a given population.
Or the observation could be an inevitable, if undesirable,
consequence of a design. In the latter case, which is the focus
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Fig. 1. The Secure Shell: each keystroke is sent immediately to the remote
machine.

Fig. 2. The Shannon cipher system.

of this paper, we call the observation the output of a side

channel. Some examples of side channels include:

• When using the Secure Shell (SSH), after the initial hand-
shake, each keystroke is sent immediately to the remote
machine, as shown in Figure 1. When communicating
over a wireless network, an eavesdropper can observe the
timing of the packets which are correlated with the timing
of the keystrokes, and hence with the input of the user
(e.g., the inter-keystroke delay in ’ka’ is significantly
smaller than that in ’9k’ [1]).

• Consider an on-chip network that has several processes
running simultaneously, one of which is malicious.
Because resources such as memory and buses are shared
on the chip, the timing characteristics (e.g., memory
access delays) observed by the malicious application
are affected by the behavior of the other applications
(e.g., memory access patterns) and can leak sensitive
information such as keys. Similar phenomena occur
when users share links or buffers in a communication
network [2].

• Consider the Shannon cipher system (shown in Figure 2)
in which a transmitter and a receiver are connected
through a public noiseless channel and share a secret
key. Unless the key rate is very high, the public message
depends on the message [3].

• An adversary could “wiretap” a communication chan-
nel to intercept transmissions. The wiretap channel is
typically noisier than the main channel, but its output
nevertheless depends on the transmitted message [4], [5].

• Suppose one would like to anonymously transmit a mes-
sage through a given network (say, a call for protest on
a social network). A powerful adversary (say, a govern-
ment) could learn the spread of the message (i.e., who
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received it), which is correlated with the identity of its
author [6], [7].

• Cellular networks track the locations of its users in order
to route calls. Such tracking data might reveal private
information of the user (such as their political affiliation,
their place of work, etc.) [8], [9].

Although at first glance such side-channels may seem innocu-
ous, many works have shown that they pose a significant secu-
rity threat [1], [10]–[16]. For instance, Zhang and Wang [10]
show how to use the keystroke timing in SSH to reduce
the search space for passwords by a factor of at least 250.
Kocher [13] shows how to break implementations of RSA
using timing information. Ristenpart et al. [17] show how
secret keys can be extracted from co-resident virtual machines
on production Amazon EC2 servers through microarchitectural
timing channels.

Addressing such threats first requires an answer to the
question posed at the outset. That is, if X is a random variable
representing sensitive information and Y is the output of a
side-channel with input X ,

How much information does Y leak about X?

Let L (X→Y ) denote a potential answer. Before discussing
existing approaches, we posit that a good choice of L (X→Y )
should satisfy the following requirements:

(R1) It should have a cogent operational interpretation. That
is, a system designer should be able to explain what
guarantees on the system an upper bound on L (X→Y )
provides. In the context of side channels, the design
goal is typically to prevent the adversary from guessing
sensitive, discrete quantites such as keys and passwords.
Thus the leakage measure should be interpretable in
terms of the adversary’s difficulty in guessing such
quantities.

(R2) Assumptions about the adversary should be minimal
(since guarantees are void if any assumption does not
hold true). Indeed, one would like to take into account
a large family of potential adversaries.

(R3) It should satisfy axiomatic properties of an information
measure:

a) The data processing inequality: L (X→Z) ≤
min{L (X→Y ) , L (Y→Z)} if X − Y − Z is a
Markov chain.

b) The independence property: L (X→Y ) = 0 if and
only if X and Y are independent.

c) The additivity property: if (X1, Y1) and
(X2, Y2) are independent, then L

(
X2

1→Y 2
1

)
=

L (X1→Y1) + L (X2→Y2).

(R4) It should accord with intuition. That is, it should not
mis-characterize the (severity of) information leakage in
systems that we understand well.

A. Common Information-Theoretic Approaches

Notably, many commonly-used information leakage metrics
do not satisfy the above requirements. For example, mutual
information, which has been frequently used as a leakage
measure [3]–[5] [18]–[22], arguably fails to satisfy both (R1)

and (R4). Regarding the latter, consider the following example
proposed by Smith [23].

Example 1: Given n ∈ N, let X = {0, 1}8n and
X ∼ Unif(X ). Now consider the following two conditional
distributions:

Y =

{
X, if X mod 8 = 0,

1, otherwise.

and Z = (X1, X2, . . . , Xn+1).

Then the probability of guessing X correctly from Y is at
least 1/8, whereas the probability of guessing X correctly
from Z is only 2−7n+1 for Z . However, one can readily
verify that I(X ; Y ) ≈ (n + 0.169) log 2 ≤ I(X ; Z) =
(n + 1) log 2 [23].

Regarding the former, note that operational interpretations
of mutual information arise in transmission and compression
settings, which are different from the security setting at hand.
Moreover, in those settings, mutual information arises as part
of a computable characterization of the solution, rather than
as part of the formulation itself, i.e., the transmission and
compression problems are not defined in terms of mutual
information.

Mutual information could potentially be justified by appeal-
ing to rate-distortion theory [24, Section V]. In fact, a num-
ber of leakage measures in the literature are based on
rate-distortion theory. For instance, Yamomoto [25] introduces
a distortion function d and measures the privacy of PY |X

using inf x̂(·) E[d(X, x̂(Y ))]. Schieler and Cuff [24] discuss
(and generalize) an example that shows the inadequacy of
this approach, if conventional distortion measures such as
Hamming distortion are used.

Example 2: Given n ∈ N, let Xn be i.i.d ∼ Ber(1/2) and
let K ∼ Ber(1/2) be independent of Xn. Suppose d is the
Hamming distortion and let PY |Xn be as follows: if K = 0,
Y = Xn; otherwise, Y = X̄n (i.e., flip all the bits of Xn).
Then inf x̂(·) E[d(X, x̂(Y ))] = 1/2, which is the maximum
distortion the adversary could incur. The proposed scheme
is hence optimal from an expected distortion point of view.
However, by observing Y , the adversary can guess Xn with
probability 1/2. Moreover, they can guess it exactly with two
attempts.

Similarly to expected distortion, the expected number of
guesses [26], [27] to find Xn fails on the fourth requirement:
it can label obviously insecure systems as secure (see [28] for
an example). Another approach is to use the probability of suc-
cessfully guessing Xn (up to some distortion, say) as a leakage
measure [28]–[30]. However, rate-distortion-based approaches
generally do not meet the second requirement (R2): they
assume there is a known distortion function, and in some
cases a particular distortion level, up to which the adversary
is interested in reproducing the sensitive information X .

B. Contributions

We introduce a new metric, maximal leakage, that meets all
the above requirements. To do so, we first describe a threat
model that captures the side-channel setup.
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Threat model. We assume the adversary is interested in a
(possibly randomized) function of X , called U . We restrict U
to be discrete, which captures most scenarios of interest (in
the side-channel examples above, all functions of interest are
discrete, e.g., a password, a message, an identity, etc). How-
ever, PU|X is unknown to the system designer. This models
the case in which we do not know the adversary’s function of
interest, and wish to account for a large family of potential
adversaries, as in the second requirement of L (X→Y ) above.
Even if it is known, PU|X could be so complicated that it
might as well be unknown. The adversary observes a random
variable Y , and the Markov chain U − X − Y holds. They
wish to guess U and can verify if their guess is correct (if,
say, U is a password for a given system, then they can attempt
to log in using it). Hence, they would like to maximize the
probability of guessing U correctly. Finally, we assume the
system designer accepts low risks (i.e., a random event that
reveals U is tolerable as long as it has very low probability), or
that the leakage is concentrated with respect to Y (i.e., we can
average over PY , which is the case in side-channels where the
input and output are running processes).

Operational, robust measure of information leakage. We
now define maximal leakage, which we denote by L (X→Y ),
as the (logarithm of the) ratio of the probability of correctly
guessing U from Y to the probability of correctly guessing
U with no observation, maximized over all U satisfying
U − X − Y (cf. Definition 1). The maximization over U
guarantees that our definition satisfies the requirement (R2) of
making minimal assumptions about the adversary. Moreover,
the operational meaning of this quantity is clear: a leak
of ℓ bits means that for any U , the multiplicative increase
(upon observing Y ) in the correct guessing probability is
upper-bounded by, but can be arbitrary close to, 2ℓ.

So defined, it is not clear a priori that maximal leakage
is computable, since it requires maximizing over all aux-
iliary random variables U . A standard approach to obtain-
ing a computable characterization in such problems is to
bound the necessary alphabet size for U in terms of the
alphabet size of X using Carathéodory’s theorem (e.g., [31,
Lemma 5.4]). This technique fails for the present problem,
however: even a binary X can require arbitrarily large U
in order to approach the supremum. Nonetheless, Theorem 1
provides a simple formula for maximal leakage for the case
of discrete X and Y . In particular, it shows that L (X→Y )
is equal to the Sibson mutual information of order infinity
I∞(X ; Y ) [32], [33]. Consequently, maximal leakage meets
our third requirement (R3) of satisfying axiomatic properties
of an information measure. That is, it is zero if and only if X
and Y are independent; it satisfies the data processing inequal-
ity; and it is additive over independent pairs {(Xi, Yi)}n

i=1.
Interestingly, it is lower-bounded by I(X ; Y ), indicating that
mutual information underestimates leakage.

Moreover, the definition of maximal leakage is shown to
be robust: the result is unaffected if the adversary picks the
function of interest U only after observing Y (cf. Theorem 2),
if they only wish to approximate U (cf. Theorem 3), if they
are allowed several guesses (cf. Theorem 4), or if they wish
to maximize some arbitrary gain function (cf. Theorem 5).

We also extend the notion of maximal leakage in two direc-
tions. We propose a conditional form of maximal leakage,
which attempts to answer the question: how much does Y leak
about X when Z is given? Here Z represents side information
that is available to the adversary. We again provide an opera-
tional definition in the guessing framework (cf. Definition 6),
and derive a simple form for L (X→Y |Z) (cf. Theorem 6).
Moreover, we generalize the computable characterization for
maximal leakage to cover a large class of random variables and
stochastic processes (cf. Theorem 7). Both the general and the
conditional form retain the axiomatic properties of a leakage
measure, and are lower-bounded by mutual information and
conditional mutual information, respectively.

New insights for mechanism design. The new metric
is useful to develop new mechanisms to mitigate leakage,
as well as to evaluate existing mechanisms for this purpose.
A common approach in such designs is to add independent
noise to successive inputs of the system. For example, in the
SSH scenario, packets could be passed through an ./M/1
queue before being sent over the network. We provide exam-
ples of such memoryless schemes to show that, roughly
speaking, they do not perform well under maximal leakage,
and are outperformed by quantization-based schemes. More
concretely, we consider the Shannon cipher system with lossy
communication and evaluate the performance of an encryp-
tion scheme using maximal leakage between the source and
the public message (other works have considered this setup
under different metrics [25], [28], [30], [34]). For a discrete
memoryless source, we show that memoryless schemes are
strictly suboptimal (cf. Lemma 9), whereas optimal schemes
correspond to good rate-distortion codes. Moreover, we derive
a single-letter characterization of the optimal (normalized)
limit (cf. Theorems 8 and 9).

Complexity of estimating maximal leakage. The com-
putation of maximal leakage might become intractable for
complicated schemes. For example, in the setup of multiple
processes running on the same chip as described above, what
determines the information leakage between processes is the
memory controller, the operation of which might depend on
many variables. Thus, we consider the problem of estimating
maximal leakage from data. We show that this task is feasible
only if we know (a lower bound on) the minimum strictly posi-
tive probability of a symbol x ∈ X , denoted by θ. More specif-
ically, we show that the number of samples needed to estimate
L (X→Y ) up to ǫ−additive-accuracy is Ω (|Y|/(θ log |Y|))
(cf. Theorem 10). Note that the lower bound diverges to
infinity as θ tends to zero. On the other hand, we show
that O

(
|Y| log |X |

θ

)
samples are sufficient (cf. Theorem 11).

This suggests that we should take into account amenability to
analysis while designing leakage-mitigating mechanisms.

Guessing framework to interpret leakage measures.

Finally, we use the guessing framework used to define maxi-
mal leakage to give new operational interpretations for differ-
ent information leakage measures. This provides a common
framework with which to compare them, and elucidates in
which setups each should be used. More specifically, we study
the following commonly used metrics: Shannon capacity, local
differential privacy [35], and maximal correlation [36].
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We show that

1) Shannon capacity captures the multiplicative increase of
the probability of correct guessing over the restricted set
of functions of X that can be reliably reconstructed from
Y , hence underestimating leakage (cf. Theorem 12);

2) Local differential privacy captures the multiplicative
increase of the guessing probability of functions of
randomized X , maximized over realizations of Y and
over distributions PX (cf. Theorem 14); Moreover, max-
imizing over realizations of Y for a fixed PX yields the
maximum information rate (cf. Theorem 13);

3) Maximal correlation captures the multiplicative change
in the variance of functions of X , rather than the
guessing probability (cf. Theorem 16). We extend this
last notion to a new measure we call maximal cost leak-

age (cf. Definition 11), which captures the worst-case
multiplicative reduction over all cost functions defined
on any hidden variable U .

C. Related Work

Calmon et al. [37] and Li and El Gamal [36] use maximal
correlation, ρm(X ; Y ), as a secrecy measure (Calmon et al.

also generalize it to k-correlation, which is defined as the
sum of the k largest principal inertial components of the joint
distribution PXY ). A key motivating result [38, Theorem 9]
shows that maximal correlation bounds the additive increase in
the correct guessing probability of any deterministic function
of X . Although ρm(X ; Y ) is zero only if X and Y are
independent, the correct guessing probability of any determin-
istic function might be unchanged even if X and Y are not
independent, as illustrated in the following example.

Example 3: Suppose PXY satisfies the following condition:
there exists x⋆ ∈ X such that for all y ∈ Y , PX|Y

(x⋆|y) ≥ 1/2. Then for any deterministic function f , f(x⋆)
is the adversary’s best guess for f(X), both with and without
the observation of Y . Hence, observing Y does not affect the
probability of guessing any deterministic function of X . Note,
however, that X and Y may be dependent.

The literature on leakage and privacy measures extends
beyond information theory to computer security and computer
science more generally. The closest to our work in fact
comes from computer security [23], [39]–[42]. In particular,
Smith [23] defines leakage from X to Y as the logarithm of the
multiplicative increase, upon observing Y , of the probability of
guessing X itself correctly, neglecting that the adversary might
be interested in certain functions of X . Braun et al. [39] con-
sider a worst case modification of the metric, and maximize the
previous quantity over all distributions on the alphabet of X
(while PY |X is fixed). The resulting quantity turns out to equal
L (X→Y )—it is called “maximal leakage” in the computer
security literature as well. It is denoted by ML(PY |X), and
its properties were further studied by Espinoza and Smith [41]
and Alvim et al. [40]. The latter also define g-leakage by
introducing a gain function g : X×X̂ → [0, 1] and considering
the normalized maximal gain (for g). Alvim et al. [42] consider
several variants of g-leakage (i.e., additive or multiplicative
increase, fixing or maximizing over the marginal PX , etc).

They show that maximizing g-leakage over gain functions g
yields maximal leakage. However, no operational significance
is attached to the g that achieves the maximum. Moreover,
the result is given only as one of many possible computable
variations of leakage [42], [43].

Another connected line of work stems from cryptogra-
phy, and in particular from the notion of semantic secu-

rity [44] which considers the security of encryption schemes.
Goldwasser and Micali [44] define the “advantage” for a given
function of the messages as the additive increase of the correct
guessing probability upon observing the encrypted message
(i.e., the ciphertext). Semantic security then requires that, for
an adversary that can work only for a polynomial (in the length
of the message) amount of time, the advantage is negligible
for all input distributions and for all deterministic functions
that are computable in polynomial time.

There are several variants of semantic security. In particular,
entropic security [45], [46] drops the computational bounds
(on the adversary and the considered functions), but restricts
its attention to input distributions with high min-entropy.
Bellare et al. [47] introduce semantic security to the wiretap
channel, and do not restrict it to computationally-bounded
adversaries or to deterministic polynomial-time computable
functions. For a given encryption scheme, they then upper
and lower-bound the advantage of semantic security in terms
of “mutual information security advantage”, which is defined
as the maximum, over all input distributions, of the mutual
information between the message and the output of the channel
whose input is the encryption of the message. For further
discussion of leakage metrics, we refer the reader to Wagner
and Eckhoff’s work [48], which categorizes over eighty such
metrics.

D. Outline

We describe our threat model and define maximal leakage
in Section II. We also give a closed-form expression of
maximal leakage (for discrete X and Y ), discuss its properties,
and compare it to related leakage metrics. In Section III,
we prove the robustness of our definition by considering
several variations on the setup, and show that they all lead
to the same quantity. Furthermore, we generalize the formula
of maximal leakage and analyze a simple model of the SSH
side-channel. We also present a conditional form of maximal
leakage. In Section IV, we consider the Shannon cipher
system and derive (asymptotically) optimal schemes. We show
that memoryless schemes are strictly suboptimal in general.
We study the complexity of estimating maximal leakage from
data in Section V. Finally, in Section VI, we use the guessing
framework to give new operational interpretations for common
information leakage metrics, and we introduce a cost-based
notion of leakage.

II. MAXIMAL LEAKAGE

Let X be a random variable representing sensitive informa-
tion, and Y be the output of a side-channel the input of which
is X . To give an operational definition of information leakage
between X and Y , we specify a threat model as follows.
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• The adversary is interested in a possibly randomized,
discrete function of X called U .

• The adversary observes Y and the Markov chain
U − X − Y holds.

• The adversary wishes to guess U and can verify if the
guess is correct.

• The distribution PU|X is unknown to the system designer.
• From the system designer’s viewpoint, if the probability

of guessing U correctly is high for some realizations
of Y , then it suffices that the probability of such real-
izations is suitably small.

To clarify our model, consider how it applies to the SSH
side-channel. In this case, X represents the nominal packet
timings. Suppose we perturb the packet timings before send-
ing them over the network, in which case Y represents
the post-perturbation timings observed by the adversary. U
corresponds to the input of the user, e.g., their password. The
adversary wishes to guess U (e.g., the password) and can
verify their guess (e.g., by attempting to log into the system).
So they wish to maximize the probability that the guess is
correct, and the system designer wishes to minimize it. The
distribution of passwords given packet timings is complicated,
so we assume it is unknown to the system designer. Finally,
the system designer only requires the probability that the
system is compromised to be small.

One might be tempted to restrict the range of U to deter-
ministic functions of X . However, this is too restrictive as
implied by Example 3 in the introduction. Moreover, in most
side-channel examples we mentioned, the U of interest is a
randomized function of X (passwords given packet timings,
key values given memory access patterns, political affiliation
given location traces, etc). On the other hand, the restriction
to discrete U ’s still captures most scenarios of interest, as in
the above examples. Indeed even when X represents location
traces, for instance, the U of interest is typically discrete,
e.g., home/work address, political affiliation, etc. Finally,
assuming PU|X is unknown allows us to take into account
a wide range of adversaries having different objectives. That
is, as in our requirement (R2), we do not assume we know
the function of interest to the adversary.

We are now ready to present the definition of maximal
leakage. Since the adversary wishes to guess U , we consider
the maximum advantage in the probability of guessing U
from Y , as compared with guessing with no observations.
Maximal leakage captures the maximum advantage over all
U ’s as in the following definition.

Definition 1 (Maximal Leakage): Given a joint distribution
PXY on alphabets X and Y , the maximal leakage from X to Y
is defined as

L (X→Y ) = sup
U−X−Y −Û

log
Pr

(
U = Û

)

maxu∈U PU (u)
, (1)

where the supremum is over all U and Û taking values in the
same finite, but arbitrary, alphabet.

Remark 1: log is the natural logarithm so L (X→Y ) is in
nats. Using log2 instead gives an answer in bits.

The guarantee that a small leakage provides is as fol-
lows. Whatever function U the adversary is interested
in, if L (X→Y ) ≤ ℓ, then supû(·) Pr (U = û(Y )) ≤
eℓ maxu PU (u). Note that the upper bound can be decomposed
into two quantities: maxu PU (u) which is completely outside
the control of the system designer, and eℓ which is determined
by the designer’s choice of PY |X (which is typically subject to
quality constraints related to the performance of the underly-
ing system). Moreover, the definition directly implies several
important properties of maximal leakage.

Lemma 1: For any joint distribution PXY on alphabets
X and Y ,

1) (Data Processing Inequality) If the Markov chain X −
Y −Z holds, L (X→Z) ≤ min{L (X→Y ) ,L (Y→Z)}.

2) If Y is discrete, L (X→Y ) ≤ log |supp(Y )|.
3) If X is discrete, L (X→Y ) ≤ log |supp(X)|.
4) L (X→Y ) ≥ 0 with equality if X and Y are

independent.
The proof is given in Appendix A-A. Note that properties
1) and 4) were two of our axioms for a leakage measure (R3).
Properties 2) and 3) are consistent with intuitive understanding
of information. In particular, a binary variable Y cannot leak
more than one bit about any variable X . Similarly, a binary
variable X has no more than one bit of information to be
leaked.

Despite the useful properties of the definition, it involves
an infinite-dimensional optimization problem, so it is not clear
a priori that it is computable. In fact, one can show that it is
impossible to bound the cardinality of the alphabet U in terms
of the cardinalities of the alphabets X and Y . Nonetheless,
we can show that maximal leakage is indeed computable and
actually takes a simple form. We focus first on the discrete
case and consider general alphabets later.

Theorem 1: For any joint distribution PXY on finite alpha-
bets X and Y , the maximal leakage from X to Y is given by
the Sibson mutual information of order infinity, I∞(X ; Y ).
That is,

L (X→Y ) = log
∑

y∈Y

max
x∈X :

PX (x)>0

PY |X(y|x) = I∞(X ; Y ).

Remark 2: Sibson’s mutual information [32], [33] of order
α (α ≥ 0, α �= 1), which can be expressed (in the discrete
case) as

Iα(X ; Y ) = inf
QY

Dα(PXY ||PX × QY ) (2)

where

Dα(P ||Q) =
1

α − 1
log

(
∑

a

Pα(a)Q1−α(a)

)
, (3)

is one of several suggested extensions of the concept of Rényi
entropy Hα(X) (itself an extension of entropy) and Rényi
divergence Dα(P ||Q). Verdú [33] argues for the adoption of
Sibson’s extension, and the above result supports that choice
by providing an operational interpretation of

I∞(X ; Y ) = lim
α→∞

Iα(X ; Y ) (4)

= inf
QY

D∞(PXY ||PX × QY ), (5)
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where

D∞(P ||Q) = lim
α→∞

Dα(P ||Q) (6)

= log

(
sup

a

P (a)

Q(a)

)
(7)

and the interchange of the limit and infimum in (4) and (5) is
implied by [49, Theorem 4] (see also (118) to follow).
Before proving the theorem, we investigate some of its con-
sequences. First, it reveals two of the more useful aspects of
maximal leakage from an engineering perspective: minimizing
L(X→Y ) over PY |X , for a fixed support of PX , amounts
to minimizing a convex function, and L(X→Y ) depends on
PX only through its support. The latter fact is very useful
because in practice PX is typically complicated and outside
our control. PX is also typically used to model the adversary’s
prior knowledge of X , which is not necessarily known to
us. The following corollary (the proof of which is given
in Appendix A-B) summarizes some useful properties of
L (X→Y ).

Corollary 1: For any joint distribution PXY on finite alpha-
bets X and Y ,

1) L (X→Y ) = 0 iff X and Y are independent.
2) (Additivity) If {(Xi, Yi)}n

i=1 are mutually independent,
then

L (Xn→Y n) =
n∑

i=1

L (Xi→Yi) .

3) L (X→Y ) = log |X | iff X is a deterministic function
of Y (assuming X has full support).

4) L (X→X) = H0(X) = log |supp(X)|.
5) L (X→Y ) is not symmetric in X and Y .
6) exp{L (X→Y )} is convex in PY |X for fixed

support of PX .
7) L (X→Y ) is concave in PX for fixed PY |X .

Note that properties 1) and 2) along with the data processing
inequality are the axioms we stated in (R3). Property 5) reveals
a potential “weakness” in some suggested leakage metrics,
including mutual information. In particular, there is no reason
to expect a priori that X leaks about Y as much as Y leaks
about X . Therefore, metrics that are symmetric by design
miss that fact (this is in contrast with Rényi’s axiom that
a dependence measure should be symmetric [50]). Finally,
property 6) shows that minimizing maximal leakage, for a
fixed support of PX , amounts to minimizing a convex function.
That is, one can efficiently solve the problem of finding
the randomization mechanism PY |X that minimizes maximal
leakage, subject to a convex constraint.

We evaluate L (X→Y ) for some special cases.
Example 4: If X ∼ Ber(q), 0 < q < 1, and Y is the output

of a BSC with parameter p, 0 ≤ p ≤ 1/2, then L (X→Y ) =
log(2(1 − p)).

Example 5: If X ∼ Ber(q), 0 < q < 1, and Y is the output
of a BEC with parameter ǫ, 0 ≤ ǫ < 1, then L (X→Y ) =
log(2 − ǫ), and L(Y→X) = log 2.

Example 6: For any deterministic law PY |X ,
L (X→Y ) = log |supp(Y )|.

Consider the examples from the introduction that showed
that expected distortion and mutual information do not meet
our fourth requirement (R4).

Example 7 (cf. Example 2): Given n ∈ N, let Xn be i.i.d
∼ Ber(1/2) and let K ∼ Ber(1/2) be independent of Xn. Let
PY |Xn be as follows: if K = 0, Y = Xn; otherwise, Y = X̄n

(i.e., flip all the bits of Xn). This scheme is optimal from an
expected Hamming distortion viewpoint. On the other hand,
L (Xn→Y ) = (n − 1) log 2, which is exactly describing that
we know Xn except for 1 bit.

Example 8 (cf. Example 1): Given n ∈ N, let X =
{0, 1}8n and X ∼ Unif(X ). Now consider the following two
conditional distributions:

Y =

{
X, if X mod 8 = 0,

1, otherwise.

and Z = (X1, X2, . . . , Xn+1).

Then L (X→Y ) = log(28n−3 + 1) > L (X→Z) =
(n + 1) log 2, whereas I(X ; Y ) ≈ (n + 0.169) log 2 <
I(X ; Z) = (n + 1) log 2.

In the next section, we elaborate on the comparison between
mutual information and maximal leakage. We also comment
on the relation to the computer security and computer science
literature, before proving Theorem 1 in Section II-B.

A. Comparison With Related Metrics

1) Mutual Information: We first compare maximal leakage
with mutual information in the following lemma. It shows that
L (X→Y ) upper-bounds I(X ; Y ), and no scalar multiple of
I(X ; Y ) can upper-bound L (X→Y ).

Lemma 2: For any joint distribution PXY on finite alpha-
bets X and Y , L (X→Y ) ≥ I(X ; Y ). Moreover, for any
c > 0, there exists PXY such that L (X→Y ) ≥ cI(X ; Y ).
Furthermore. L (X→Y ) = I(X ; Y ) if and only if

1) If PXY (x, y) > 0 and PXY (x0, y) > 0, then
PY |X(y|x) = PY |X(y|x0).

2) For all y, y0 ∈ supp(Y ),
∑

x:PXY (x,y)>0

PX(x) =
∑

x′:PXY (x′,y′)>0

PX(x0).

Remark 3: A joint distribution satisfying condition 1) is
called singular [51]. Moreover, if X has full support,
L (X→Y ) = I(X ; Y ) ⇒ L (X→Y ) = C(PY |X), where
C(PY |X) is the Shannon capacity of PY |X .

Proof: That I∞(X ; Y ) ≥ I(X ; Y ) is already known [32],
[33]. For the stronger statement, it suffices to show it for
binary X and Y . To that end, let X ∼ Ber(1/2) and let PY |X

be a BSC with parameter p ∈ (0, 1/2). Then L (X→Y ) =
log(2(1−p)) and I(X ; Y ) = log 2−H(p) (where the entropy
function is computed using the natural logarithm). One can
readily verify that

lim
p→1/2

log(2(1 − p))

log 2 − H(p)
= +∞.

The conditions for equality can be readily verified, and are
included in Appendix A-C for completeness.
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The lemma shows that a small maximal leakage is a more
stringent requirement than a small mutual information. Since
L (X→Y ) depends on PX only through its support, it follows
that maximal leakage is at least the Shannon capacity of the
channel PY |X when X has full support, and this inequality
can be strict (as in the BSC example in the proof of the
lemma). This justifies the claim in the introduction that the
Shannon capacity of a side-channel does not necessarily
upper-bound its leakage. The maximization in the definition
of maximal leakage hints at the reason why. In particular,
Shannon capacity is concerned with (the size of) message sets
that can be reliably reconstructed at the receiver, i.e., Pr(U =
Û(Y )) ≥ 1 − ǫ for some small ǫ. Leakage, on the other
hand, is concerned with the advantage in guessing, without any
notion of reliability. This observation is made mathematically
precise in Section VI-A. On the other hand, local differential
privacy [35], which some regard as too pessimistic (e.g., [35]),
does upper-bound maximal leakage. This is further explored
in Section VI-C.

2) g-Leakage: Given a conditional PY |X on finite alphabets
X and Y , Braun et al. [39] define leakage as follows

ML(PY |X) = sup
PX

log
supX−Y −X̂ Pr(X = X̂)

maxx∈X PX(x)
. (8)

This definition assumes the adversary wishes to guess X
itself, and hence does not meet our second requirement (R2).
However, it is equal to L (X→Y ) when X has full support.

Remark 4: Smith [23] initially considered the optimization
in (8) without taking the supremum over PX . However,
as shown by Example 3, this can be zero even if X and Y are
not independent. Hence, it fails the independence property in
(R3). See also Iwamoto and Shikata [52].
Alvim et al. [40] define g-leakage by introducing a gain
function g : X × X̂ → [0, 1], where X̂ is a finite set. Then

MLg(PX , PY |X) = log
supX−Y −X̂ E[g(X, X̂)]

maxx̂∈X̂ E[g(X, x̂)]
. (9)

It is shown [42] that

sup
X̂ ,g:X×X̂→[0,1]

MLg(PX , PY |X) = L (X→Y ) . (10)

This definition however does not explicitly account for random
functions of X , whereas we have seen that in many cases the
adversary could be interested in a hidden random variable U .
Moreover, there is no operational interpretation attached to the
g that achieves the maximum. Nonetheless, these metrics are
quite similar to the one introduced here.

3) Semantic Security: The semantic and entropic secu-
rity literature [44]–[46] consider the difference between the
guessing probabilities as opposed to the ratio considered in
Definition 1. Since U ’s of interest, such as passwords, are
typically hard to guess (i.e., maxu PU (u) is small), the ratio
is arguably the more appropriate measure of the change. It is
also the more natural choice when viewing leakage in terms
of leaked bits. Nevertheless, the following simple argument
bounds the maximum difference in terms of maximal leakage.

Lemma 3: For any joint distribution PXY on alphabets
X and Y ,

sup
U :U−X−Y

(
sup
û(·)

Pr(U = û(Y )) − max
u∈U

PU (u)

)

≤ 1−e−L(X→Y ),

where the supremum is over all U taking values in a finite,
but arbitrary, alphabet.

Proof: Consider any U satisfying U − X − Y . Then

supû(·) Pr(U = û(Y ))

maxu∈U PU (u)
≤ eL(X→Y ).

Hence,

sup
û(·)

Pr(U = û(Y )) − max
u∈U

PU (u)

≤
(

sup
û(·)

Pr(U = û(Y ))
)(

1−e−L(X→Y )
)

≤ 1−e−L(X→Y ).

This bound is nontrivial when maxu PU (u) < e−L(X→Y ),
i.e., H∞(U) > L (X→Y ), where H∞(U) =
− logmaxu PU (u) is the min-entropy. It is worth noting that
Alvim et al. showed that

sup
X̂ ,g:X×X̂→R

(
sup

X−Y −X̂

E[g(X, X̂)] − max
x̂∈X̂

E[g(X, x̂)]

)
,

where g is “1-spanning” [42, Definition 3], can be efficiently
computed [42, Theorem 17, Corollary 18]. On the other hand,
for a given threshold t, it is NP-hard [42, Theorem 11] to
decide whether

sup
PX

(
sup
x̂(·)

Pr(X = x̂(Y )) − max
x∈X

PX(x)

)
≥ t. (11)

Lemma 3, however, gives a simple bound on the latter quantity.

B. Proof of Theorem 1

Assume, without loss of generality, that PX(x) > 0 for all
x ∈ X . To show that L (X→Y ) ≤ I∞(X ; Y ), consider any
U satisfying U − X − Y . Define

L (X→Y ) [U ] = log

∑
y∈Y maxu∈U PUY (u, y)

maxu∈U PU (u)
, (12)

so that L (X→Y ) = supU :U−X−Y L (X→Y ) [U ]. Then
∑

y∈Y

max
u∈U

PUY (u, y)

=
∑

y∈Y

max
u∈U

∑

x∈X

PX(x)PU|X (u|x)PY |X(y|x)

≤
∑

y∈Y

max
u∈U

∑

x∈X

PX(x)PU|X (u|x) max
x′∈X

PY |X(y|x0)

=
∑

y∈Y

(
max
x′∈X

PY |X(y|x0)

)
max
u∈U

∑

x∈X

PX(x)PU|X(u|x)

=
∑

y∈Y

max
x∈X

PY |X(y|x)max
u∈U

PU (u).
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Therefore, L (X→Y ) [U ] ≤ I∞(X ; Y ) for all PU|X , hence
L (X→Y ) ≤ I∞(X ; Y ).

For the reverse inequality, we construct a PU|X for
which L (X→Y ) [U ] = I∞(X ; Y ), which we will call the
“shattering” PU|X . To that end, let p⋆ = minx∈X PX(x).
For each x ∈ X , let k(x) = PX(x)/p⋆, and let
U =

⋃
x∈X{(x, 1), (x, 2), . . . , (x, ⌈k(x)⌉)}. For each u =

(iu, ju) ∈ U and x ∈ X , let PU|X(u|x) be:

PU|X((iu, ju)|x)

=

⎧
⎪⎨
⎪⎩

p⋆

PX (x) , iu = x, 1 ≤ ju ≤ ⌊k(x)⌋,
1 − (dk(x)e−1)p⋆

PX(x) , iu = x, ju = ⌈k(x)⌉,
0, iu �= x, 1 ≤ ju ≤ ⌈k(iu)⌉.

(13)

It is easy to check that if ⌊k(x)⌋ = ⌈k(x)⌉, then the corre-
sponding formulas are equal. Then, for each ((iu, ju), x) ∈
U × X ,

PUX((iu, ju), x) =⎧
⎪⎨

⎪⎩

p⋆, iu = x, 1 ≤ ju ≤ ⌊k(x)⌋,
PX(x) −(⌈k(x)⌉ − 1)p⋆, iu = x, ju = ⌈k(x)⌉,
0, iu �= x, 1 ≤ ju ≤ ⌈k(iu)⌉.

(14)

Note that the supports of PU|X=x is disjoint for each distinct x,
and it effectively “shatters” x into shards of probability p⋆.
Now note that

max
u∈U

PU (u) = max
(iu,ju)∈U

PUX((iu, ju), iu) = p⋆. (15)

Now consider any (u, y) ∈ U × Y . We have

PUY ((iu, ju), y) =
∑

x∈X

PX(x)PU|X ((iu, ju)|x)PY |X(y|x) =

PX(iu)PU|X((iu, ju)|iu)PY |X(y|iu) ={
p⋆PY |X(y|iu), 1 ≤ ju ≤ ⌊k(iu)⌋,
(PX(x) − (⌈k(x)⌉ − 1)p⋆)PY |X(y|iu), ju = ⌈k(iu)⌉.

(16)

Then, for a given y ∈ Y ,

max
(iu,ju)∈U

PUY ((iu, ju), y) = max
(iu,1)∈U

p⋆PY |X(y|iu)

= max
x∈X

p⋆PY |X(y|x). (17)

Finally, we get

L (X→Y ) ≥ L (X→Y ) [U ] = log
∑

y∈Y

max
x∈X

PY |X(y|x),

where the inequality follows from the definition, and the
equality follows from equations (12), (15), and (17). �

Note that in the above proof, the conditional distribution
(given in (13)) that achieves the supremum in (1) depends
on PXY only through the X−marginal, PX . So we get the
following proposition.

Proposition 4: Let X be a finite alphabet and PX a
distribution on X . Then the “shattering” PU|X defined in (13)
achieves the supremum in (1) for all finite alphabets Y and
conditional distributions PY |X .

III. MAXIMAL LEAKAGE: VARIATIONS AND EXTENSIONS

We now consider several natural variations to our threat
model. In particular, we consider the following scenarios.

1) The adversary chooses the variable of interest U after

observing Y , i.e., for different realizations of Y , they
might attempt to guess different functions of X .

2) The adversary only needs their guess to be within a
certain distance of the true value of U .

3) The adversary can make several guesses.
4) The adversary attempts to maximize a gain function

defined on U × Û for some alphabet Û .
We modify the definition of maximal leakage accordingly for
each scenario. However, for each of these cases, the resulting
computable characterization is unchanged. This shows that
the definition of maximal leakage is robust, and meets the
requirements we presented in the introduction. In particular,
it has several useful operational interpretations, and it requires
minimal assumptions about the adversary’s goal.

Furthermore, we extend the notion of maximal leakage in
two directions. First, we propose a conditional form of leakage
L (X→Y |Z), where Z represents side information available at
the adversary. Finally, we generalize Theorem 1 to account for
a large class of random variables, including point processes.
We use the general formula to analyze a simple model of the
SSH side-channel.

A. Multiple Functions of Interest

In our threat model, we assumed that the adversary is
interested in a specific randomized function of X . However,
they could be interested in several functions and choose which
one to guess only after seeing the realization of Y . To account
for this, we modify the definition of maximal leakage as
follows.

Definition 2 (Opportunistic Maximal Leakage): Given a
joint distribution PXY on alphabets X and Y , define

L̃ (X→Y )

= log
∑

y∈Y

PY (y) sup
U :U−X−Y

maxu∈U PU|Y (u|y)

maxu∈U PU (u)
(18)

= sup
(Uy,y∈Y)−X−Y

log
∑

y∈Y

PY (y)
maxu∈Uy

PUy|Y (u|y)

maxu∈Uy
PUy

(u)
(19)

= sup
U

log
∑

y∈Y

PY (y)
maxu

∑
xPU|X,Y (u|x, y)PX|Y (x|y)

maxu

∑
xPU|X,Y (u|x, y)PX(x)

,

(20)

where the U variables in all three suprema take values in finite
but arbitrary alphabets.

The different Uy, y ∈ Y in (19) can be interpreted as
different secrets that the adversary might attempt to guess.
The adversary opportunistically attempts to guess secret Uy

when it observes Y = y. Notably, allowing the adversary this
additional freedom does not change the result.

Theorem 2: For any joint distribution PXY on finite
alphabets X and Y ,

L (X→Y ) = L̃ (X→Y ) .

Authorized licensed use limited to: Cornell University Library. Downloaded on June 24,2020 at 00:29:33 UTC from IEEE Xplore.  Restrictions apply. 



ISSA et al.: OPERATIONAL APPROACH TO INFORMATION LEAKAGE 1633

Proof: It follows straightforwardly from the definitions
that L̃ (X→Y ) ≥ L (X→Y ). For the reverse direction, con-
sider the following proposition.

Proposition 5: Suppose U , X , and Y are discrete random
variables that satisfy the Markov chain U −X − Y . Then for
each y ∈ supp(Y ),

maxu∈U PU|Y (u|y)

maxu∈U PU (u)
≤

maxx:PX|Y (x|y)>0 PY |X(y|x)

PY (y)
.

It follows from the proposition that

exp{L̃ (X→Y )} ≤
∑

y∈supp(Y )

max
x:PX|Y (x|y)>0

PY |X(y|x)

≤
∑

y∈Y

max
x:PX(x)>0

PY |X(y|x).

Then it remains to prove Proposition 5. To that end, consider
a triple of discrete random variables U , X , and Y satisfying
U − X − Y , and fix y ∈ supp(Y ). Then

max
u∈U

PU|Y (u|y)

= max
u∈U

∑

x:PX|Y (x|y)>0

PU|X(u|x)PX|Y (x|y)

= max
u∈U

∑

x:PX|Y (x|y)>0

PU|X(u|x)PX(x)
PY |X(y|x)

PY (y)

≤ max
x′:PX|Y (x′|y)>0

PY |X(y|x0)

PY (y)
max
u∈U

∑

x:PX|Y (x|y)>0

PUX(u, x)

≤ max
x′:PX|Y (x′|y)>0

PY |X(y|x0)

PY (y)
max
u∈U

PU (u),

as desired.

B. Approximate Guessing

Consider the case in which the adversary only needs the
guess to be within a certain distance of the true function value,
according to a given distance metric. As such, the random
variable U , over which we are optimizing, now lives in
a given metric space U and is no longer restricted to be
discrete. We call this modified measure maximal locational
leakage. The term “locational” is motivated by the scenario in
which the variable of interest U is a geographical location,
such as a person’s home address (potentially revealed by
GPS traces [53]) or a person’s physical location (potentially
revealed by cellular tracking data [8]).

Definition 3 (Maximal Locational Leakage): Given a joint
distribution PXY on finite alphabets X and Y , and a metric
space U (with its associated Borel σ-field), the maximal
locational leakage from X to Y is defined as

LU (X→Y ) = sup
U :U−X−Y

∃u:Pr(U∈B(u))>0

log
supû(·) Pr(U ∈ B(û(Y )))

supû Pr(U ∈ B(û))
,

(21)
where B(u) is the closed unit ball centered at u ∈ U .

Theorem 3: For any joint distribution PXY on finite alpha-
bets X and Y , and any metric space U ,

LU (X→Y ) ≤ L(X→Y ),

with equality if U has a countably infinite subset S such that
no pair of its elements can be contained in a single unit ball.

Proof: Assume, without loss of generality, that X has full
support. Now consider any U and û(Y ) in the maximization
of (21):

Pr(U ∈ B(û(Y ))

≤
∑

y∈Y

sup
u∈U

P (U ∈ B(u), Y = y)

=
∑

y∈Y

sup
u∈U

∑

x∈X

P (U ∈ B(u), X = x, Y = y)

=
∑

y∈Y

sup
u∈U

∑

x∈X

P (U ∈ B(u))P (X = x|U ∈ B(u))·

PY |X(y|x)

≤
∑

y∈Y

sup
u∈U

P (U ∈ B(u)) sup
x∈X

PY |X(y|x)

=

⎡

⎣
∑

y∈Y

sup
x∈X

PY |X(y|x)

⎤

⎦ sup
u∈U

P (U ∈ B(u)).

Therefore,

LU (X→Y ) ≤ log
∑

y∈Y

sup
x∈X

PY |X(y|x) = L(X→Y ).

If there exists a countably infinite S ⊆ U such that no
pair of its elements can be contained in a single unit ball
(e.g., U is unbounded), then exact guessing of discrete quanti-
ties can be simulated by using S for the support of a discrete
random variable U . Hence LU (X→Y ) ≥ L(X→Y ), which
implies the equality.

C. Multiple Guesses

The definition of maximal leakage (Definition 1) allowed
the adversary a single guess. However, an adversary might
be able to make several guesses in some practical scenarios.
For example, if the adversary is trying to guess a password
U of some system, they can typically try several passwords
before they are locked out. Similarly, if they are trying to
guess a secret key to decrypt an encrypted message, they can
make several attempts. We modify the definition to allow for
k guesses, for any integer k, as follows.

Definition 4 (k-Maximal Leakage): Given a joint distribu-
tion PXY on finite alphabets X and Y , and a positive integer k,
the k-maximal leakage from X to Y is defined as

L(k) (X→Y ) = sup
U−X−Y −(Ûi)k

i=1

log
Pr

(∨k
i=1 U = Ûi

)

max S⊆U
|S|≤k

PU (S)
,

where U takes values in a finite, but arbitrary, alphabet.
It turns out that k-maximal leakage and maximal leakage

are equivalent.
Theorem 4: For any joint distribution PXY on finite alpha-

bets X and Y , and any k ∈ N,

L(k) (X→Y ) = L (X→Y ) .

The proof is given in Appendix B-A.
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D. General Gains

We now consider the case in which different realiza-
tions of U might have different significance for the adver-
sary. For example, an adversary monitoring the timing of
packet transmissions over a given network [54] might seek
to deduce source-destination pairs. However, they might be
more interested in detecting communication between specific
pairs, corresponding to (say) suspicious persons, governmental
agencies, etc. Hence, there is more value to the detection of
the existence of a link, rather than its absence. This mirrors
the asymmetric cost of false alarm and missed detection in
hypothesis testing. To account for this, we use a gain function
g : U × Û → [0,∞) and maximize over gain functions as
follows.

Definition 5 (Maximal Gain Leakage): Given a joint distri-
bution PXY on finite alphabets X and Y , the maximal gain

leakage is defined as

LG (X→Y ) = sup
U :U−X−Y

Û ,g:U×Û→[0,∞):
supû E[g(U,û)]>0

log
supû(·) E[g(U, û(Y ))]

supû E[g(U, û)]
,

where U is a finite, but arbitrary, alphabet.
Similarly to previous variations, maximal gain leakage turns

out to be equivalent to maximal leakage.
Theorem 5: For any joint distribution PXY on finite

alphabets X and Y ,

L (X→Y ) = LG (X→Y ) .

Remark 5: For a similar result in which U = X but
one takes the supremum over all X distributions, see
Alvim et al. [42].

Proof: It follows straightforwardly from the definitions
that LG (X→Y ) ≥ L (X→Y ). For the reverse direction,
consider any U satisfying U −X −Y , any (non-empty) set Û
and function g : U × Û → [0,∞). Then

sup
û(·)

E[g(U, û(Y ))]

=
∑

y∈Y

sup
û∈Û

∑

u∈U

g(u, û)PUY (u, y)

=
∑

y∈Y

sup
û∈Û

∑

u∈U

∑

x∈supp(X)

g(u, û)PX(x)PU|X (u|x)·

PY |X(y|x)

≤
∑

y∈Y

(
max

x′∈supp(X)
PY |X(y|x0)

)
·

sup
û∈Û

∑

u∈U

∑

x∈supp(X)

g(u, û)PX(x)PU|X (u|x)

=
∑

y∈Y

(
max

x′∈supp(X)
PY |X(y|x0)

)
sup

û
E[g(U, û)],

as desired.

E. Conditional Maximal Leakage

One of the main challenges in information leakage problems
comes from the fact that the adversary can acquire information
from multiple sources. This prompted researchers in database

security to make very conservative assumptions about the
knowledge of the adversary: differential privacy is introduced
in a setup in which the adversary knows all the entries of
the database except one [55]. This also raises interest in the
behavior of mechanisms under composition [56]. That is, if the
adversary receives multiple independent observations released
by a given secure mechanism, how do the security guarantees
degrade? In order to answer these questions, we propose
a conditional form of maximal leakage, which is defined
analogously to Definition 1.

Definition 6 (Conditional Maximal Leakage): Given
a joint distribution PXY Z on alphabets X , Y and Z ,
the conditional maximal leakage from X to Y given Z is
defined as

L (X→Y |Z) = sup
U :U−X−Y |Z

log
Pr(U = Û(Y, Z))

Pr(U = Ũ(Z))
, (22)

where U takes values in a finite, but arbitrary, alphabet, and
Û(Y, Z) and Ũ(Z) are the optimal (i.e., MAP) estimators of
U given (Y, Z) and Z , respectively.

Remark 6: The Markov chain U − X − Y |Z is equivalent
to U−(X, Z)−Y . The above definition is hence conservative,
in that it allows the channel from X to U to depend on Z . One
could instead consider Us satisfying the Markov chain U−X−
(Y, Z). The quantity so modified appears to be considerably
more difficult to analyze.

Theorem 6: Given a joint distribution PXY Z on finite
alphabets X , Y and Z , the conditional maximal leakage from
X to Y given Z is given by

L (X→Y |Z) = log max
z:PZ (z)>0

∑

y

max
x:

PX|Z(x|z)>0

PY |XZ(y|x, z).

(23)
In other terms, L (X→Y |Z) = maxz∈supp(Z) L(X →

Y |Z = z), where L(X → Y |Z = z) is interpreted as the
unconditional maximal leakage evaluated with respect to the
joint distribution PXY |Z=z . The following corollary summa-
rizes important properties of conditional maximal leakage.

Corollary 2: Given a joint distribution PXY Z on finite
alphabets X , Y and Z ,

1) (Data Processing Inequality) If the Markov chain X −
Y − V |Z holds for a discrete random variable V , then
L (X→V |Z) ≤ min{L (X→Y |Z) ,L (Y→V |Z)}.

2) L (X→Y |Z) ≤ min{log |X |, log |Y|}.
3) L (X→Y |Z) = 0 iff X − Z − Y holds.
4) (Additivity) If {(Xi, Yi, Zi)}n

i=1 are mutually indepen-
dent, then

L (Xn
1→Y n

1 |Zn
1 ) =

n∑

i=1

L (Xi→Yi|Zi) .

5) L (X→Y |Z) ≥ I(X ; Y |Z).
6) L (X→Y |Z) is not symmetric in X and Y .
7) If Z − X − Y holds, then

L (X→Y |Z) ≤ L (X→Y ) ,

with equality if for some z ∈ supp(Z),
supp(PX|Z=z) = supp(PX).

8) L (X→(Y, Z)) ≤ L (X→Z) + L (X→Y |Z) .
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Similarly to maximal leakage, properties 1)-4) can be seen
as axiomatic for a conditional leakage metric. Property 5) is
analogous to the relationship between maximal leakage and
mutual information. Property 7) is interesting in that it exhibits
a behavior similar to mutual information. Indeed, if Z −X −
Y holds, then I(X ; Y |Z) ≤ I(X ; Y ). Property 8) can be
viewed as a one-sided chain rule. A simple consequence of
properties 7) and 8) is the following composition lemma.

Lemma 6 (Composition Lemma): Given a joint distribution
PXY Z on finite alphabets X , Y and Z , if Z − X − Y holds,
then

L (X→(Y, Z)) ≤ L (X→Z) + L (X→Y ) .

Hence, if an adversary has access to side information Z
and this is not known to the system designer (which is often
the case in practice), then minimizing L (X→Y ) (irrespective
of Z) is still a reasonable objective.

The proofs of Theorem 6 and Corollary 2 are given in
Appendices B-B and B-C, respectively.

F. General Alphabets

Finally, we generalize Theorem 1 to allow for a large
class of random variables and stochastic processes. We use
the general formula to study a simple model of the SSH
side-channel and analyze the performance of commonly used
mechanisms. Our analysis suggests that memoryless schemes
generally do not perform well under maximal leakage.

Before stating the theorem for general alphabets, we intro-
duce the following notation. For a given probability distribu-
tion PX , and a measurable function f : X → R, the essential

supremum of f with respect to PX is defined as:

ess-supPX
f(X) = inf{α : PX({x : f(x) > α}) = 0}. (24)

Equivalently,

ess-supPX
f(X) = sup{β : PX({x : f(x) > β}) > 0}. (25)

Theorem 7: Let (X × Y, σXY , PXY ) be a probability
space with associated probability spaces (X , σX , PX) and
(Y, σY , PY ), where σXY is the product sigma-algebra.

1) If PXY ≪ PX×PY and σX is generated by a countable
set, then

L (X→Y ) = log

∫

Y

ess-supPX
f(X, y)PY (dy), (26)

where f(x, y) = dPXY

d(PX×PY ) (x, y).

2) If absolute continuity fails, then L (X→Y ) = +∞.

In the discrete case, L (X→Y ) depends on PXY only
through PY |X and the support of PX . Although it is not
immediately clear from (26), this holds true in the general
case in the following sense. Define an equivalence relation on
the set of probability measures on a given measurable space
as follows:

P ≡ Q if P ≪ Q and Q ≪ P. (27)

Then L (X→Y ) depends on PXY only through PY |X and the
equivalence class of PX . We formalize this observation in the
following lemma.

Lemma 7: Let (X , σX , PX1) be a probability space, and let
(Y, σY ) and (X ×Y, σXY ) be measurable spaces, where σXY

is the product sigma-algebra. Fix a kernel µ from X to Y , that
is, a function µ : X × σY → [0,∞) that satisfies:

1) For every B ∈ σY , µ(·, B) is σX -measurable.
2) For every x ∈ X , µ(x, ·) is a probability measure on

(Y, σY ).
Let PX1 Y1 and PY1 be the probability measures induced by
PX1 and µ(·, ·) on (X × Y, σXY ) and (Y, σY ), respectively.
If PX1 Y1 ≪ PX1 × PY1 , then µ(x, ·) ≪ PY1 . If, in addition,
σX is generated by a countable set,

L (X1→Y1) = log

∫

Y

ess-supPX1

(
dµ(X, ·)

dPY1

)
PY1(dy)

=log

∫

Y

ess-supPX

(
dµ(X, ·)

dQY

)
QY (dy), (28)

where PX is an arbitrary representative of the equivalence
class (cf. (27)) of PX1 and QY is any measure satisfying
PY1 ≪ QY .

Consequently, if PX2 is a probability measure on (X , σX)
satisfying PX2 ≡ PX1 , then PX2 Y2 ≪ PX2×PY2 , PY1 ≡ PY2 ,
and

L (X2→Y2) = L (X1→Y1) ,

where PX2 Y2 and PY2 are the induced probability measures
on (X × Y, σXY ) and (Y, σY ), respectively.

The proofs of Theorem 7 and Lemma 7 are given in Appen-
dices B-D and B-E, respectively. We now discuss implications
and examples of the theorem.

Corollary 3: Let (X × Y, σXY , PXY ) be a probability
space with associated probability spaces (X , σX , PX) and
(Y, σY , PY ). Assume PXY ≪ PX ×PY and σX is generated
by a countable set. Then

1) L (X→Y ) = 0 iff X and Y are independent.
2) (Additivity) If {(Xi, Yi)}n

i=1 are mutually independent,
then

L (Xn
1→Y n

1 ) =
n∑

i=1

L (Xi→Yi) .

3) L (X→Y ) ≥ I(X ; Y ).

Proof: For 3) it suffices to consider the case in which
PXY ≪ PX × PY . Let f(·, ·) denote the derivative of PXY

with respect to PX × PY and consider the following.

I(X ; Y ) = E[log f(X, Y )]
(a)
≤ logE[f(X, Y )]

= log

∫

Y

∫

X

f2(x, y)PX(dx)PY (dy)

≤ log

∫

Y

(
ess-supPX

f(X, y)
)
·

∫

X

f(x, y)PX(dx)PY (dy)

(b)
= L (X→Y ) ,
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where (a) follows from Jensen’s inequality, and (b) follows
from the fact

∫
X f(x, y)PX(dx) = 1 Y –a.s. because

∫

Y

[∫

X

f(x, y)PX(dx)

]
1(y ∈ B)PY (dy) = P (Y ∈ B)

for all B. 1) follows from the definition and 3). 2) follows
from the fact that if (X1, Y1) is independent of (X2, Y2), then
f(x1, x2, y1, y2) = f(x1, y1)f(x2, y2).

Recall that the data processing inequality also holds by
Lemma 1. Hence, the general formula of maximal leakage
retains the axiomatic properties we required in (R3). It also
covers the case in which X is discrete and Y is continuous,
or vice versa.

Corollary 4: If X and Y are jointly continuous real random
variables,

L (X→Y ) = log

∫

R

ess-supPX
fY |X(y|x)dy, (29)

where fY |X(·|·) is the conditional pdf of Y given X . More-
over, if the marginal pdf of X , fX(x), is continuous, and for
almost all y ∈ R, fY |X(y|x) is continuous on D := {x :
fX(x) > 0}, then

L (X→Y ) = log

∫

R

sup
x:fX(x)>0

fY |X(y|x)dy, (30)

Proof: Equation (29) follows directly from Lemma 7.
To show (30), we first show that for all y ∈ R,

sup
x:fX(x)>0

fY |X(y|x) ≥ ess-supPX
fY |X(y|x).

Let My := ess-supPX
fY |X(y|x). Given ǫ > 0, let Sy,ǫ = {x :

fY |X(y|x) > My − ǫ}. By definition of My , PX(Sy,ǫ) > 0.
Hence, there exists x ∈ Sy,ǫ such that fX(x) > 0. Conse-
quently, supx:fX(x)>0 fY |X(y|x) ≥ My − ǫ. The inequality
follows since ǫ can be chosen arbitrarily small.

To show the other direction, fix y such that fY |X(y|x)
is continuous on D = {x : fX(x) > 0}, and let
Ny := supx:fX (x)>0 fY |X(y|x). Assume Ny > 0 (otherwise,
the inequality is trivial). Consider 0 < ǫ < Ny and x⋆

ǫ

such that fX(x⋆
ǫ ) > 0 and fY |X(y|x⋆

ǫ ) > Ny − ǫ. Given
0 < ǫ0 < min{f(x⋆

ǫ )/2, Ny − ǫ}, choose δ > 0 such that
|x⋆

ǫ−x| < δ ⇒ |f(x⋆
ǫ ) − f(x)| < ǫ0 and |fY |X(y|x⋆

ǫ ) −
fY |X(y|x)| < ǫ0. Hence, for all x satisfying |x⋆

ǫ−x| < δ,
fY |X(y|x) > Ny − ǫ − ǫ0, and

PX(x :fY |X(y|x) >Ny− ǫ − ǫ0) ≥ PX(x : |x⋆
ǫ−x| < δ)

=

∫ x⋆
ǫ+δ

x⋆
ǫ−δ

fX(x)

> δfX(x⋆
ǫ ) > 0.

The inequality follows since ǫ and ǫ0 can be chosen to be
arbitrarily small.

Example 9: If X and Y are jointly Gaussian, then

L (X→Y ) =

{
0, if X and Y are independent,

+∞, otherwise.

Example 10: Suppose X is real and its pdf satisfies
fX(x) > 0 for all x ∈ R. Let Y = X + Z , where Z

is a continuous real random variable independent of X . Let
z0 = argmaxfZ(z). Then

L (X→Y ) = log

∫

R

sup
x∈R

fY |X(y|x)dy

= log

∫

R

sup
x

fZ(y − x)dy

= log

∫

R

fZ(z0)dy

= +∞.

The above examples suggest that “adding independent
noise” is not necessarily secure in the maximal leakage sense.
The following example considers a simple model of the SSH
side-channel and further illustrates this point.

Example 11: Consider the SSH side-channel and suppose
we wish to perturb the packet timings before they are sent
over the network so that we decrease information leakage.
We represent the process of incoming packets as a Poisson
process of a given rate, λ. More formally, fix T ∈ R+ and let
ΩT be the set of all counting functions on [0, T ], i.e., ω ∈ ΩT

is an integer-valued, nondecreasing, right-continuous function
on [0, T ] and ω(0) = 0. Let {Ft}T

t=0 be the filtration over
ΩT generated by the mapping ω �→ ωt. Let XT

0 be a Poisson
process of rate λ, representing the incoming packets. Let Y T

0

be a point process on (ΩT ,FT ) representing the outgoing
packets.

a) Memoryless scheme: Suppose we hold each packet for
an independent random amount of time before releasing it into
the network. More specifically, let Y T

0 be the output of an
initially-empty exponential-server queue with rate µ > λ and
input XT

0 . Then

1

T
L
(
XT

0 →Y T
0

)
= µ, (31)

and, as T → ∞, the average waiting time for a packet
(between arrival and transmission) tends to 1

µ−λ . Note that
the system is unstable if µ < λ.

Proof: Let P0 be the probability measure on (ΩT ,FT )
under which the output is distributed as a Poisson process of
rate one. It is known [57] [58, Ch. VI, Theorem T3] that for
(x, y) ∈ ΩT × ΩT ,

dPXY

dPX × P0
(x, y) = exp

{∫ T

0

log(µI(xt > yt−))dyt+

∫ T

0

(1 − µI(xt > yt))dt

}
=: L(x, y).

Now note that,

dPXY

dPX × PY
dPY =

dPXY

dPX × PY

dPX × P0

dPX × P0

dPY

dP0
dP0

= LdP0,

where the equalities follow from [59, Ex. 32.6, p. 426] and
the fact that dPX×P0

dPX×PY
= dP0

dPY
. Then

L
(
XT

0 →Y T
0

)
= log

∫

ΩT

ess-supPX
L(X, y)P0(dy).
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It is easy to verify that ess-supPX
L(X, y) = exp(yT log

µ + T ). By noting that yT is distributed as Poi(T ) under P0,
we get

1

T
L
(
XT

0 →Y T
0

)
=

1

T
log

∫

ΩT

exp [yT log µ + T ]P0(dy)

=
1

T
log exp[T (µ − 1) + T ] = µ.

The computation of the average waiting time is standard
(e.g., [60, (3.26)]).

b) Accumulate-and-dump: Fix τ ∈ R+ and m ∈ N.
Assume (for simplicity) that τ divides T , and consider the
following scheme. The packets are accumulated, then released
(“dumped”) only at integer multiples of τ . If in a given interval
more than m packets are received, only the first m are sent
and the remaining ones are dropped. Then

1

T
L
(
XT

0 →Y T
0

)
=

1

τ
log(m + 1), (32)

and the average waiting time for a packet is τ/2 assuming it
is not dropped. Moreover,

Pe ≤ eλτ(ν−(1+ν) log(1+ν)), (33)

where Pe is the probability that the number of packets exceeds
m in a given interval of length τ , and ν = (m + 1)/(λτ)− 1.
Hence, choosing m to be (1 + ν̂)λτ − 1, for some ν̂ > 0,
yields

1

T
L
(
XT

0 →Y T
0

)
=

1

τ
log((1 + ν̂)λτ),

and a probability of dropping a packet that is exponentially
small in ν̂. Note that, as opposed to the memoryless scheme
above, accumulate-and-dump can make the leakage arbitrarily
small. For a more direct comparison, suppose we wish the
average waiting time to be no more than 1/λ. Hence, for the
memoryless scheme we choose µ = 2λ, which leads to a
leakage of 2λ. For the accumulate-and-dump scheme, choose
τ = 2/λ and ν̂ = e3/2− 1(≈ 9). Then one can readily verify
that the leakage is 3λ/2 and Pe is on the order of 10−12.

Proof: Since the number of arrivals in a Poisson process
are identically distributed and independent for non-overlapping
intervals of the same length,

1

T
L
(
XT

0 →Y T
0

)
=

1

T

T

τ
L (Xτ

0→Y τ
0 ) =

1

τ
L (Xτ

0→Yτ )

=
1

τ
log(m + 1),

where the last equality follows from the fact that Yτ is a deter-
ministic function of Xτ

0 that takes values in {0, 1, . . . , m}.
To compute the average waiting time, it is enough to con-
sider the waiting time for the packets that arrive in the first
interval [0, τ ]. Conditioned on Xτ = N , the arrival times
are distributed as the ordered statistics of N independent
uniform random variables over [0, τ ] [61, Ch. 4, Theorem 4A].
Therefore, the conditional average waiting time is τ/2. Hence,
the average waiting time is τ/2. Finally, the upper bound on
Pe is an application of the Chernoff bound to Poisson random
variables.

c) Inject dummy packets: Song et al. [1] suggest using
dummy packets to keep the rate of transmission fixed. That is,
they use accumulate-and-dump with an extra parameter
mb ∈ N. If in a given interval N < mb packets are received,
we inject mb − N dummy packets. Then

1

T
L
(
XT

0 →Y T
0

)
=

1

τ
log(m − mb + 1). (34)

Remark 7: In [1], the authors do not suggest an upper
bound on the number of packets that can be released in
a given interval. They implicitly assume that there exists
an m for which the number of arrivals in a given interval
is at most m almost surely. This is not true for the Pois-
son process, but for any process that satisfies this property,
the leakage of accumulate-and-dump + inject-dummy-packets
is upper-bounded by the right hand side of (34).

The choice of m and mb provides a trade-off between the
overhead of injecting dummy packets and the probability of
dropping a packet. Song et al. [1] also point out an important
drawback of the memoryless scheme. If the adversary observes
several independent instances of the output for the same input
(e.g., they eavesdrop several times on the same user while they
are inputting their password), they can diminish the effect of
randomization by considering the average (over the different
observations) of the inter-arrival times between successive
packets.
Similar observations hold for the optimal mechanism for the
Shannon cipher system, to which we turn next.

IV. SHANNON CIPHER SYSTEM

The main goal in quantifying information leakage is to
enable the design of mechanisms to mitigate it. As an appli-
cation, we study a (traditional) secrecy setup known as the
Shannon cipher system [3]. The setup consists of a transmitter
and a legitimate receiver that are linked by a public noiseless
channel and share a common key, and an eavesdropper who
has access to the public channel and is aware of the source
statistics and the used encryption schemes. The encryption
schemes must allow the legitimate receiver to perfectly recon-
struct the source sequence. Shannon [3] showed that perfect
secrecy (i.e., making the source Xn and the public message
M independent) requires a key rate as high as the message
rate, which is typically not feasible in practice. Hence several
works [3], [24]–[26], [28], [34] studied the optimal partial

secrecy achievable for a given key rate r, and used different
measures to assess secrecy guarantees.

In this section, we use maximal leakage to assess the
performance of any feasible encryption scheme. Similarly
to previous works, we are concerned with the dependence
between the source and the public message (i.e., L (Xn→M)
in our case, as opposed to the dependence between the secret
key and the public message). Moreover, we allow for lossy
communication by introducing a distortion function d at the
legitimate receiver, as shown in Figure 3. For a given distortion
level D, we require that the probability of violating the
distortion constraint decays as 2−nα, for a given α > 0. Then,
for a given D and α, we study the asymptotic behavior of the
normalized maximal leakage.
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Fig. 3. The Shannon cipher system with lossy communication: the transmitter
and the legitimate receiver have access to a common key K , which consists
of nr purely random bits, where r is called the key rate. Using both the
public message M and the secret key K , the legitimate receiver generates
a reconstruction Y n that should satisfy a given distortion constraint. The
eavesdropper has access to the public message M only.

Fig. 4. Information blurring system.

For a discrete memoryless source (DMS), we derive
the optimal (i.e., minimal) limit of the normalized maxi-
mal leakage. The scheme we propose for the primary user
(i.e., the transmitter–legitimate receiver pair) operates on a
type-by-type basis. With each type, we associate a good
rate-distortion code. The codebooks are then divided into bins,
and the key is used to randomize, within a bin, the choice
of codeword associated with a particular source sequence.
However, types with low enough probability are discarded,
i.e., a dummy message is associated with all the source
sequences belonging to such types.

We also derive the optimal limit when the requirement of
a decaying probability of violating the distortion constraint
is replaced with an expected distortion constraint. In this
scenario, one might expect that memoryless schemes are
sufficient for optimality. We evaluate this claim by considering
the case in which there is no common key and the rate of the
channel is high (cf. Figure 4). This setup was dubbed the
“information blurring system” in [28], and it represents a
stylized model of side-channels. For instance, in the SSH
setup, Xn could represent the timings of the incoming packets,
Y n could represent the perturbed timings of the outgoing pack-
ets, and the distortion function could represent required quality
(e.g., delay) constraints imposed on the system. We show that,
even in this setup, memoryless schemes are strictly subopti-
mal in general. This strengthens our earlier observations in
Section III-F and suggests that commonly used memoryless
schemes are generally outperformed by quantization-based
schemes.

A. Problem Setup and Statement of Result

Let X and Y be the alphabets associated with the trans-
mitter and the legitimate receiver, respectively. The trans-
mitter and the legitimate receiver are connected through a
noiseless channel of rate R, and share common randomness

Kn ∈ Kn = {0, 1}nr, where Kn is uniformly distributed over
Kn, and r > 0 is the rate of the key. The transmitter observes
an n-length message Xn = (X1, X2, · · · , Xn), independent
of Kn, and wishes to communicate it to the receiver. Let
f and h be, respectively, the transmitter’s encoding and the
receiver’s decoding functions. The transmitter then sends a
message Mn = f(Xn, Kn), Mn ∈ Mn = {0, 1}nR, and
the receiver generates a reconstruction Y n = h(Mn, Kn).
We allow the functions f and h to be randomized (beyond
the private randomness in Kn). For a given distortion function
d : X × Y → R+, distortion level D, and excess distortion
probability α, we require that Pr(d(Xn, Y n) > D) ≤ 2−nα,
where d(Xn, Y n) = 1

n

∑n
i=1 d(Xi, Yi).

An eavesdropper intercepts the message M . We assume they
know the source statistics as well as the encoding and decoding
functions, but do not have access to the key Kn.

The primary user aims to minimize the maximal leak-
age to the eavesdropper L (Xn→Mn). We characterize the
asymptotically-optimal normalized maximal leakage under the
following assumptions1:

(A1) The alphabets X and Y are finite.
(A2) The source is memoryless and has full support.
(A3) The distortion function d is bounded, i.e., there exists

Dmax such that, for all x ∈ X and y ∈ Y ,
d(x, y) ≤ Dmax. Moreover, D ≥ Dmin, where Dmin =
maxx∈X miny∈Y d(x, y).

(A4) R > maxQ:D(Q||P )≤α R(Q, D), where R(Q, D) is the
rate-distortion function for source distribution Q.

We denote the optimal limit by L(P, D,
−→
R, α), where P is

the source distribution, and
−→
R = (R, r):

L(P, D,
−→
R, α) = lim

n→∞
min

{fn∈Fn}

1

n
L (Xn→f(Xn, Kn)) ,

where {Fn} is the set of feasible schemes, i.e., Fn = {fn :
Xn × {0, 1}nr → {0, 1}nR

∣∣ there exists g : {0, 1}nR ×
{0, 1}nr → Yn satisfying Pr(d

(
Xn, g

(
f(Xn, Kn), Kn

))
)≤

2−nα}.
It will be more notationally convenient in this section to

give the answers in bits rather than nats. Hence we will use
the logarithm to the base 2 when computing maximal leakage.
To avoid confusion, we will explicitly mention the unit we are
using.

The main result of this section is the characterization of the
optimal limit as follows:

Theorem 8: Under assumptions (A1)-(A4), for any DMS
P and distortion function d with associated distortion level
D ≥ Dmin and distortion excess probability α > 0:

L(P, D,
−→
R, α)= max

Q:D(Q||P )≤α
[R(Q, D)−r]+ (bits), (35)

where [a]+ = max{0, a}.
Note that the case α = ∞ (i.e., when the distortion

constraint is imposed almost surely) is included in the theorem.
Moreover, in that case, the theorem holds even if the source
is not memoryless, as long as the support of Xn is Xn.

1Note that it is necessary to have R ≥ maxQ:D(Q||P )≤α R(Q, D) for the
primary user’s problem to be feasible.
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This follows from the fact that L (Xn→Mn) and the con-
straint, when imposed almost surely, depend on the distribution
of Xn only through its support. Therefore, solving for any
specific distribution on that support is equivalent to solving
for all distributions on the same support.

Before proving the theorem (in Sections IV-D
and IV-E for achievability and converse, respectively),
we discuss a variation using an expected distortion constraint
and its implication on the performance of memoryless
schemes.

B. Memoryless Schemes With Expected Distortion

Instead of requiring a decaying probability of violating
the distortion constraint, we could require that the distor-
tion constraint holds only in expectation—as is common
in many works in the literature. That is, we require that
E[d(Xn, Y n)] ≤ D. In that case, we modify assumption (A4)
to be:

(A4’) R > R(P, D).

Theorem 9: Under assumptions (A1)-(A3) and (A4’), for
any DMS P and distortion function d with associated distor-
tion level D ≥ Dmin:

L(P, D,
−→
R ) = [R(P, D) − r]+ (bits). (36)

Proof: The achievability argument follows by a simi-
lar manner as the one given in subsection IV-D. However,
instead of encoding on a type-by-type basis, we simply use a
good rate-distortion code that satisfies the expected distortion
requirement and divide it into bins of size 2nr. One could also
derive it from Theorem 8 as follows:

L(P, D,
−→
R ) ≤ lim

D′→D+
lim
α→0

L(P, D0,
−→
R, α)

= [R(P, D) − r]+.

As for the lower bound, we use the fact that I∞(X ; Y ) ≥
I(X ; Y ) [33]. This problem, with mutual information
replacing maximal leakage, has already been solved by
Yamamoto [25] and Schieler and Cuff [24]. More specifically,
Corollary 5 of [24] yields that the optimal normalized mutual
information is indeed given by [R(P, D) − r]+.

With the expected distortion constraint, one might venture
that the optimal limit is achievable with a memoryless scheme,
in which the encoder passes the source through i.i.d copies
of an optimal conditional distribution PY |X . Counter to this
common intuition, and counter to the case in which leakage
is measured via mutual information, we show that this is
generally not the case when the objective is maximal leakage.

To that end, consider the case in which r = 0 and R =
log |Y| (cf. Figure 4). By Theorem 9, L(P, D) = R(P, D).
Now define

Lmem
n (P, D) = min

PY |X :E[d(X,Y )]≤D

1

n
L (Xn→Y n) , (37)

where PXnY n =
∏n

i=1 PXi
PYi|Xi

. By the additive property of
maximal leakage, it follows straightforwardly that Lmem

n (P, D)
does not depend on n, so we will drop the n subscript.

Lemma 8: Lmem(P, D) = R(P, D) if and only if
there exists PY |X that achieves the rate-distortion func-
tion and satisfies 1) PXY (x, y)PXY (x0, y) > 0 ⇒
PY |X(y|x) = PY |X(y|x0), and 2)

∑
x:PXY (x,y)>0 PX(x) =∑

x′:PXY (x′,y′)>0 PX(x0) for all y, y0 ∈ supp(Y ).
Proof: The proof follows straightforwardly from

Lemma 2.
The above conditions imply that for some conditional
achieving the rate-distortion function P ⋆

Y |X , Lmem(P, D) =

L (X→Y ) = I(X ; Y ) = R(P, D). If X has full support, then
L (X→Y ) = I(X ; Y ) ⇒ L (X→Y ) = C(P ⋆

Y |X). Hence,
R(P, D) = C(P ⋆

Y |X). The latter equality is not a sufficient
condition, however. Hence, memoryless schemes are strictly
suboptimal, except in very special cases.

We next strengthen this observation by relaxing the con-
straint in (37) by allowing the choice of the conditional
distribution PYi|Xi

to depend on the index i. So define

Lmem,i
n (P, D) = min

PY n|Xn :PY n|Xn=
�

n
i=1 P

(i)

Yi|Xi

1

n
L (Xn→Y n)

(38)

subject to E[d(Xn, Y n)] ≤ D.

This is still not sufficient to achieve optimality in general,
as the following lemma shows.

Lemma 9: Suppose Xn is i.i.d ∼ Ber(p), p ∈ (0, 1/2], d
is the Hamming distortion, and D ∈ [0, p]. Then

Lmem,i
n (P, D) ≥ (1 − D/p) (bits).

On the other hand, by Theorem 9, L(P, D) = R(P, D) =
H(p) − H(D). Since H(p) − H(D) < 1 − D/p in general
(where the inequality can be checked using convexity), mem-
oryless schemes are strictly suboptimal.

Proof: For any PY n|Xn in the minimization, let Di =
E[d(Xi, Yi)] = Pr(Xi �= Yi). Without loss of generality,
we can assume Di ≤ p. Then

L (Xn→Y n) =

n∑

i=1

L (Xi→Yi)

≥
n∑

i=1

min
PYi|Xi

:

Pr(Xi 6=Yi)≤Di

L (Xi→Yi) .

We show in Appendix C that

min
PYi|Xi

:

Pr(Xi 6=Yi)≤Di

L (Xi→Yi) = log2(2 − Di/p) (bits). (39)

Thus,

L (Xn→Y n) ≥
n∑

i=1

log2(2 − Di/p)

=

n∑

i=1

log2

(
2− (Di/p)(1)− (1 − Di/p)(0)

)

(a)
≥

n∑

i=1

(Di/p) log2(1) + (1 − Di/p) log2(2)

=

n∑

i=1

(1 − Di/p)

(b)
≥ n(1 − D/p),
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where (a) follows from the fact that log2(2 − x) is concave
in x, and (b) follows from the constraint in (38).

C. Notation

In the following, Z is an arbitrary discrete set, and Z is a
random variable over Z .

- For a sequence zn ∈ Zn, Qzn is the empirical PMF of
zn, also referred to as its type.

- Qn
Z is the set of types in Zn, i.e., the set of rational

PMF’s with denominator n.
- For QZ ∈ Qn

Z , the type class of QZ is TQZ
� {zn ∈

Zn : Qzn = QZ}.
- EQ[·], HQ(·), and IQ(·; ·) denote respectively expecta-

tion, entropy, and mutual information taken with respect
to distribution Q.

- exp2{.} denotes 2(·).

D. Achievability Proof of Theorem 8

We will slightly abuse notation and shorten L(P, D,
−→
R, α)

to L in the following. We now show that the right-hand side
of (35) upper-bounds L.

Consider any ǫ > 0 and let n be large enough such that
we can construct a rate-distortion code Cn

QX
, for each type

QX ∈ Qn
X , satisfying the following: each sequence xn ∈ TQX

is covered and |Cn
QX

| ≤ 2n(R(QX ,D)+ǫ). Such construction is
guaranteed by the type covering lemma (Lemma 9.1 in [31]).
We divide the codebook Cn

QX
into

⌈∣∣Cn
QX

∣∣ /2nr
⌉

bins, each
of size 2nr, except for possibly the last one. We denote by
Cn

QX
(i, ·) the ith partition of the codebook, and by Cn

QX
(i, j)

the jth codeword in the ith partition. For each xn ∈ TQX
,

let ixn and jxn denote, respectively, the index of the partition
containing the codeword associated with xn and the index of
the codeword within the partition (Note that if more than one
codeword can be associated with xn, we fix any one of them
arbitrarily). Finally, let m(QX , i, j) be a message consisting
of the following:

• ⌈log2 |Qn
X |⌉ bits to describe the type QX .

•
⌈
log2

⌈∣∣Cn
QX

∣∣ /2nr
⌉⌉

bits to describe the index i, where
1 ≤ i ≤

⌈∣∣Cn
QX

∣∣ /2nr
⌉
.

•
⌈
log2

∣∣Cn
QX

(i, ·)
∣∣⌉ bits to describe the index j, where

0 ≤ j ≤ exp2

⌈
log2

∣∣Cn
QX

(i, ·)
∣∣⌉− 1.

Now, for any δ ∈ R, let Q(α, δ) = {QX : D(QX ||P ) ≤
α + δ}, Qn(α, δ) = {QX ∈ Qn

X : D(QX ||P ) ≤ α + δ}, and
consider the following lemma.

Lemma 10:

lim
δ→0

max
QX∈Q(α,δ)

R(QX , D) = max
QX∈Q(α,0)

R(QX , D).

Proof: This follows directly from the convexity of
D(Q||P ), and Propositions 12 and 13 in [28].
Now let δ > 0 be such that maxQX∈Q(α,δ) R(QX , D) < R
(Such δ exists by Lemma 10 and (A4)). Finally, for each
sequence xn, let s(xn) =

⌈
log

∣∣Cn
QX

(ixn , ·)
∣∣⌉, and let Ks(xn)

be the first s(xn) bits of Kn. The transmitter encodes as
follows. Given xn, if Qxn ∈ Qn(α, δ), then

f(xn, Kn) = m
(
Qxn , ixn , jxn ⊕ Ks(xn)

)
, (40)

where the XOR-operation is performed bitwise. Note that,
in this case, the legitimate receiver can retrieve the type of
the transmitted sequence and the index of the bin from the
first two parts of the message, and the index of the sequence
within the bin using the last part of the message and the key
Kn, so that h(Mn, Kn) = Cn

Qxn
(ixn , jxn). Now, consider an

m0 ∈ Mn that has not been used by the previous encoding
(Assumption (A4) and the choice of δ ensures the existence
of such m0). Then, for all xn such that Qxn /∈ Qn(α, δ),

f(xn, Kn) = m0. (41)

Remark 8: To verify that the suggested scheme satisfies the
excess distortion probability constraint, consider the following:

Pr(d(Xn, Y n) > D) ≤
∑

QX /∈Qn(α,δ)

P (Q)

≤
∑

QX /∈Qn(α,δ)

2−nD(QX ||P )

≤ (n + 1)|X |2−n(α+δ) < 2−nα,

where the last inequality holds for large enough n.
Effectively, we are leaking the first two parts of the message

QXn and iXn , and hiding completely the last part jXn . Since
there are only polynomially many types, the first part does
not affect the normalized leakage. The second part, however,
consists roughly of R(Q, D)−r bits, whenever R(Q, D) > r;
otherwise, i.e., when R(Q, D) ≤ r, there is only one bin and
there is no information to be leaked.

For a more rigorous analysis, let Pf be the induced joint
probability distribution of (Xn, Mn). Then, for xn satisfying
Qxn ∈ Qn(α, δ), we get from (40):

Pf

(
m(Qxn , ixn , j)

∣∣xn
)

= 2−s(xn), 0 ≤ j ≤ 2s(xn) − 1.

Let S(xn) = 2s(xn). Note that we can equivalently denote
S(xn) by S(Qxn , ixn), since the dependence on the sequence
is only through the type and the index of the bin. Therefore,
we get

exp2{L (Xn→Mn)}
=

∑

m∈Mn

max
xn∈Xn

Pf (m|xn)

= max
xn∈Xn

Pf (m0|xn)+

∑

QX∈
Qn(α,δ)

⌈|Cn
QX

|/2nr⌉∑

i=1

S(QX ,i)−1∑

j=0

max
xn∈Xn

Pf (m(QX , i, j)|xn)

= 1 +
∑

QX∈
Qn(α,δ)

⌈|Cn
QX

|/2nr⌉∑

i=1

S(QX ,i)−1∑

j=0

S(QX , i)−1

≤ 1 +
∑

QX∈Qn(α,δ)

(2n(R(QX ,D)+ǫ−r) + 1)

≤ 1 + 2
∑

QX∈Qn(α,δ)

2n max{R(QX ,D)+ǫ−r,0}

≤ 4(n + 1)|X | exp2{n max
QX∈Qn(α,δ)

[R(QX , D) + ǫ − r]+}.
(42)
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Taking the limit as n tends to infinity, and noting that ǫ and
δ were arbitrary, we get that

L ≤ max
Q:D(Q||P )≤α

[R(Q, D) − r]+,

where the inequality follows from Lemma 10 and the follow-
ing lemma, the simple of proof of which is omitted.

Lemma 11:

lim
n→∞

max
Q∈Qn

X :D(Q||P )≤α
R(Q, D) = max

Q:D(Q||P )≤α
R(Q, D).

E. Converse Proof of Theorem 8

We now show that L is lower-bounded by the right-hand
side of (35). To that end, consider any valid encoding func-
tion f . To lower-bound L (Xn→Mn), we consider a specific
PU|Xn . In particular, we consider the “shattering” PU|Xn

given in (13). Recall

PU|Xn((iu, ju)|xn) =
⎧
⎪⎨

⎪⎩

p⋆

P (xn) , iu = xn, 1 ≤ ju ≤ ⌊k(xn)⌋,
1 − (dk(xn)e−1)p⋆

P (xn) , iu = xn, ju = ⌈k(xn)⌉,
0, iu �= xn, 1 ≤ ju ≤ ⌈k(iu)⌉.

Therefore, maxu∈U PU (u) = p⋆. We will also consider a
sub-optimal guessing function for U . The scheme is as follows:
the eavesdropper first tries to guess the key Kn by choosing
an element uniformly at random from {0, 1}nr. We denote
this guess by K̃n. Then, proceeding by assuming that the key
guess was correct, they try to guess the sequence xn using a
guessing function given by Lemma 12 below. We denote this
stage by g1. Finally, again proceeding by assuming that the
source sequence guess was correct, the eavesdropper attempts
to guess U by using the MAP rule. We denote this stage by g2,
and we get for each xn ∈ Xn,

g2(x
n) = (xn, 1), and Pr(g2(x

n) = Un|xn) =
p⋆

P (xn)
.

(43)

Lemma 12: There exists a function g1 : Yn → Xn

such that, for all (xn, yn) satisfying d(xn, yn) ≤ D,
Pr (xn = g(yn)) ≥ cn2−n(HQxn (X)−R(Qxn ,D)), where cn =
(n + 1)−|X ||Y|(|X |+1).

Proof: This is an application of Lemma 5 in [28].
In particular, we set in Lemma 5 V to be X , de to be
the Hamming distortion function, and De to be zero. Then,
IP ⋆

n(Qxnyn )(X ; V |Y ) (as defined in [28]) satisfies:

IP ⋆
n(Qxnyn )(X ; V |Y )

= HQxnyn (X |Y )

= HQxn (X) − HQxn (X) + HQxnyn (X |Y )

≤ HQxn (X) − R(Qxn , D).

To analyze the above scheme, fix ǫ > 0, and let Pf denote
the induced joint probability on (Xn, Kn, Mn). Furthermore,
without loss of generality, we can assume that the decoding

function h is a deterministic function of Mn and Kn. Finally,
define

MD(xn, k) = {m ∈ Mn : d(xn, h(m, k)) ≤ D},
xn ∈ Xn, k ∈ Kn, (44)

and A = {(xn, yn) ∈ Xn × Yn : d(xn, yn) > D}.
(45)

Letting g be the concatenation of the two stages, we get

Pr(U = g(M))

=
∑

xn∈Xn

∑

u∈U

∑

k∈Kn

∑

m∈Mn

P (xn)PU|Xn(u|xn)PKn
(k)·

Pf (m|xn, k)P (u = g(m)|xn, m, k)

≥
∑

xn∈Xn

∑

u∈U

∑

k∈Kn

∑

m∈MD(xn,k)

P (xn)PU|Xn(u|xn)PKn
(k)·

Pf (m|xn, k)P (u = g(m)|xn, m, k)

≥
∑

xn∈Xn

∑

u∈U

∑

k∈Kn

∑

m∈MD(xn,k)

P (xn)PU|Xn(u|xn)PKn
(k)·

Pf (m|xn, k)P (K̃n = k)P (g1(h(m, k)) = xn)·
P (g2(x

n) = u|xn)

(a)

≥ cn

∑

xn∈Xn

∑

k∈Kn

∑

m∈MD(xn,k)

P (xn)PKn
(k)Pf (m|xn, k)·

2−nr2−n(HQxn (X)−R(Qxn ,D))p⋆/P (xn)

= cnp⋆2−nr
∑

QX∈Qn
X

∑

xn∈TQX

∑

k∈Kn

∑

m∈MD(xn,k)

P (xn)PKn
(k)

Pf (m|xn, k)2−n(HQX
(X)−R(QX ,D))/P (xn)

= cnp⋆2−nr
∑

QX∈Qn
X

∑

xn∈TQX

∑

k∈Kn

∑

m∈MD(xn,k)

P (xn)PKn
(k)·

Pf (m|xn, k)2n(R(QX ,D)+D(QX ||P ))

= cnp⋆2−nr
∑

QX∈Qn
X

2n(R(QX ,D)+D(QX ||P ))Pf (Ac ∩ TQX
),

(46)

where (a) follows from Lemma 12, (43), and (44). Now, note
that for any Q,

Pf (Ac|TQ) = 1 − Pf (A|TQ)

≥ 1 − min{1, Pf(A)/P (TQ)}
≥ 1 − min{1, 2−n(α−D(Q||P )− |X|

n
log(n+1))}

= max{0, 1 − 2−n(α−D(Q||P )−
|X|
n

log(n+1))}.

Then, continuing (46), we get

Pr(U = g(M))

≥ cnp⋆2−nr
∑

QX∈Qn
X

2n(R(QX ,D)+D(QX ||P ))P (TQX
)·

max{0, 1 − 2−n(α−D(QX ||P )− |X|
n

log(n+1))}
(a)

≥ c0np⋆2−nr
∑

QX∈Qn(α,−ǫ)

2nR(QX ,D)·

(1 − 2−n(α−D(QX ||P )−
|X|
n

log(n+1)))
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(b)

≥ c0np⋆2−nr
∑

QX∈Qn(α,−ǫ)

2nR(QX ,D)(1/2)

≥ (c0np⋆/2) max
QX∈Qn(α,−ǫ)

exp2{n(R(QX , D) − r)}, (47)

where (a) and (b) hold for large enough n, and c0n =
(n + 1)−|X |cn. Finally taking the ratio of Pr(U = g(M))
and maxu PU (u), and taking the limit as n tends to infinity,
and noting that ǫ is arbitrary, we get

L ≥ max
Q:D(Q||P )≤α

R(Q, D) − r,

where the inequality follows from Lemmas 10 and 11. Since
L is positive by definition,

L ≥ [ max
Q:D(Q||P )≤α

R(Q, D) − r]+

= max
Q:D(Q||P )≤α

[R(Q, D) − r]+.

V. LEARNING MAXIMAL LEAKAGE FROM DATA

In the previous two sections, we analyzed leakage-
mitigating schemes for a simple model of the SSH
side-channel and derived the (asymptotically) optimal scheme
for the Shannon cipher system. In general, computing the
maximal leakage induced by a given scheme might become
intractable for complicated schemes. Consider, for instance,
an on-chip network with several processes sharing its memory.
Suppose one of the processes is malicious and another process
is decrypting a message using a secret key. As we mentioned
in the introduction, a side-channel exists between these two
processes because the memory access patterns of the latter
affect the memory access delays of the former. This side-
channel, however, is determined by the operation of the
memory controller which could depend on many variables,
as well as the behavior of other processes on the chip which
might be difficult to model.

For such complicated schemes, one might simulate the sys-
tem and attempt to estimate maximal leakage from data traces.
This section investigates the complexity of this task, i.e., the
number of samples needed to estimate L (X→Y ), which we
equivalently denote by L(PX ; PY |X). To this end, an estimator
is defined as a randomized function f : (X ×Y)⋆ → R, which
maps a sequence of samples drawn from a joint distribution to
an estimate of its maximal leakage. Given a desired level of
accuracy δ and a probability of error ǫ, the sample complexity
of an estimator f is defined as:

Sδ,ǫ

(
|X |, |Y|

)
[f ] = min{n : (48)

PXY

(∣∣L(PX ; PY |X) − f(Xn, Y n)
∣∣ > δ

)
< ǫ,

for all PXY ∈ PX×Y},

where PXY ∈ PX×Y is the set of all probability distributions
on X ×Y , and (Xn, Y n) are drawn independently from PXY .
Then the sample complexity of maximal leakage is defined as:

Sδ,ǫ

(
|X |, |Y|

)
= inf

f
Sδ,ǫ

(
|X |, |Y|

)
[f ]. (49)

We show that Sδ,ǫ(|X |, |Y|) turns out to be infinity for inter-
esting values of the parameters. Hence, the design of secure

systems should take amenability to analysis into consideration.
That is, it is preferable to design, for instance, a memory
controller that we can study analytically, rather than one that
follows complicated ad-hoc rules that are (only) believed to
be secure.

The impossibility result is mainly due to the discontinuity
of maximal leakage in the support of X . More precisely, let θ
be a lower bound on the minimum strictly positive probability
of an element in X , and define

Pθ
X×Y = {PXY ∈ PX×Y : min

x∈X :PX(x)>0
PX(x) ≥ θ}, (50)

Sδ,ǫ

(
|X |, |Y|, θ

)
=inf

f
min{n : (51)

PXY

(∣∣L(PX ; PY |X)−f(Xn, Y n)
∣∣> δ

)
< ǫ,

for all PXY ∈Pθ
X×Y}.

Then the following lower bound holds.
Theorem 10: For ǫ = 0.1 and c0 < 1/2 there exists c

such that for all θ, all |X |, all sufficiently large |Y|, and all
1/|Y| < δ < c0, we have

Sδ,ǫ(|X |, |Y|, θ) ≥ c
|Y|

θ log |Y| log2 1

δ
. (52)

If θ → 0, the bound diverges to infinity, which justifies
our earlier claim that Sδ,ǫ(|X |, |Y|) is +∞. Nevertheless, if a
lower bound θ is known, then the following upper bound holds.

Theorem 11: For all θ ∈ (0, 1), finite alphabets X and Y ,
δ > 0, and ǫ ∈ (0, 1),

Sδ,ǫ

(
|X |, |Y|, θ

)
≤ 8

(
log(5/ǫ) + |Y| log |X |

)

θ
(
(2− e−δ)log(2− e−δ) + e−δ− 1

) .

(53)

For small δ, the denominator behaves as δ2. If θ is of
the order of 1/|X |, we get S(θ, δ, ǫ) ≤ O(|X |(|Y| log |X | +
log(1/ǫ))/δ2).

Remark 9: In terms of the dependence on the alphabets
and θ, the upper and lower bounds are within sub-polynomial
factors of each other.

We prove the achievability result in Section V-B and the
converse result in Section V-C. Both proofs use the standard
technique of Poisson sampling, so we now clarify the connec-
tion between Poisson and fixed-length sampling.

A. Poisson Sampling

With Poisson sampling, for a given n, we first generate
N ∼ Poi(n) and then generate (XN , Y N ) from PXY . So we
define the Poisson sample complexity as follows:

S̃δ,ǫ

(
|X |, |Y|, θ

)
= inf

f
min{n : N ∼ Poi(n), (54)

Pr
(∣∣L(PX ; PY |X) − f(XN , Y N )

∣∣ > δ
)

< ǫ,

for all PXY ∈ Pθ
X×Y}.

The following lemma will be useful for our analysis. It is a
simple application of the Chernoff bound, hence its proof is
omitted.
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Lemma 13: Consider δ ∈ (0, 1), λ > 0, and let
N ∼ Poi(λ).

Pr(N ≥ (1 + δ)λ) ≤ exp{λ(δ − (1 + δ) log(1 + δ))}, (55)

and

Pr(N ≤ (1 − δ)λ) ≤ exp{λ(−δ−(1 − δ) log(1 − δ))}.
(56)

Remark 10: It is a simple exercise to check that the expo-
nents are negative for all δ ∈ (0, 1).

Remark 11: We will later slightly abuse notation and
rewrite Pr(N ≥ z) where N ∼ Poi(λ) as Pr(Poi(λ) ≥ z).

We now show that fixed-length sampling and Poisson sam-
pling are equivalent, up to constant factors.

Lemma 14: Fix ǫ ∈ (0, 1), δ > 0, and θ ∈ (0, 1). Suppose
there exists f such that, given n1 ≥ log(5/ǫ)/ log(4/e) and
N ∼ Poi(n1),

Pr
(∣∣L(PX ; PY |X) − f(XN , Y N )

∣∣ > δ
)

<
4ǫ

5
.

Then

Sδ,ǫ

(
|X |, |Y|, θ

)
≤ 2n1. (57)

On the other hand, if there exists n2 ≥ log(1/ǫ)/ log(e/2)
such that, for all estimators f ,

Pr
(∣∣L(PX ; PY |X) − f(XN , Y N )

∣∣ > δ
)

> 2ǫ,

where N ∼ Poi(n2), then

Sδ,ǫ

(
|X |, |Y|, θ

)
≥ n2

2
. (58)

Proof: Consider an optimal fixed-length estimator with
2n1 samples. Then, a Poi(n1) estimator can outperform it only
if N > 2n1. However, by Lemma 13,

Pr(Poi(n1) > 2 n1) ≤ e−n1(2 log 2−1) ≤ ǫ/5.

Conversely, consider an optimal fixed-length estimator n2/2
samples. Then, it can outperform a Poi(n2) estimator only if
N < n2/2. However, by Lemma 13,

Pr(Poi(n2) < n2/2) ≤ e−n2(1+log(1/2)) ≤ ǫ.

B. Proof of Theorem 11

Let

M(PX ; PY |X) := exp{L(PX ; PY |X)}
=

∑

y∈Y

max
x∈X :

PX (x)>0

PY |X(y|x). (59)

It is straightforward to verify that a (1 − e−δ)-multiplicative
estimator for M(PX ; PY |X) translates to a δ-additive esti-
mator for L(PX ; PY |X), where a δ̂-multiplicative estima-
tor means that |M − M̂ | ≤ δ̂M . Therefore, in the
remainder, we will analyze multiplicative estimators of M .
Now, consider n ∈ N and let N ∼ Poi(n). Let
(X1, Y1), (X2, Y2), . . . , (XN , YN ) be N independent samples
drawn from a distribution PXY . For each x ∈ X and

y ∈ Y , let Nx denote the number of times x appears, Ny

the number of times y appears, and Nx,y the number of times
(x, y) appears in the sequence. Then, Nx ∼ Poi(nPX(x)),
Ny ∼ Poi(nPY (y)), and Nx,y ∼ Poi(nPXY (x, y)). Now, let
θ0 = θ/4. The estimator works as follows:

1) For each x ∈ X with Nx > 0, generate a random
variable Ñx ∼ Poi(nθ0). If Nx = 0, set Ñx = 0.

2) For each x ∈ X with Nx > 0, keep only the first Ñx

samples containing x and disregard the rest.
a) If there are not enough samples for some x

(i.e., Ñx > Nx), then let M̂ = 1.
b) Otherwise, let

M̂ =
∑

y∈Y

max
x∈X

Ñx,y

nθ0
, (60)

where Ñx,y is the number of times (x, y) appears
in the truncated sequence.

To analyze the above estimator, we first consider a slightly
modified setting. In particular, suppose the estimator has
access to an infinite sequence (X1, Y1), (X2, Y2), . . . Then,
Nx = +∞ with probability 1 for each x ∈ supp(X).
In this case, for each (x, y) with PX(x) > 0, Ñx,y ∼
Poi(nθ0PY |X(y|x)). For each y ∈ Y , let x(y) ∈
argmaxx:PX(x)>0 PY |X(y|x). Let δ̂ = 1 − e−δ, and consider
the following:

Pr

(
M̂ − M ≤ −δ̂M

)

= Pr

⎛

⎝
∑

y∈Y

max
x∈X

Ñx,y/nθ0 ≤ (1 − δ̂)M

⎞

⎠

= Pr

⎛

⎝
∑

y∈Y

max
x∈X

Ñx,y ≤ (1 − δ̂)Mnθ0

⎞

⎠

≤ Pr

⎛
⎝
∑

y∈Y

Ñx(y),y ≤ (1 − δ̂)Mnθ0

⎞
⎠

(a)
= Pr

(
Poi (nθ0M) ≤ (1 − δ̂)Mnθ0

)

(b)

≤ exp
{
Mnθ0

(
−δ̂ − (1 − δ̂) log(1 − δ̂)

)}

(c)

≤ exp
{

nθ0
(
−δ̂ − (1 − δ̂) log(1 − δ̂)

)}
, (61)

where (a) follows from the fact that Ñx,y’s are independent
Poi

(
nθ0PY |X(y|x(y))

)
, (b) follows from Lemma 13, and

(c) follows from the fact that M ≥ 1. Now consider the
probability that M̂ exceeds M by a factor of at least δ̂M :

Pr

(
M̂ − M ≥ δ̂M

)

= Pr

⎛

⎝
∑

y∈Y

max
x∈X

Ñx,y ≥ (1 + δ̂)Mnθ0

⎞

⎠

= Pr

⎛

⎝
⋃

(x1,...,x|Y|)∈X |Y|

⎛

⎝
∑

y∈Y

Ñxy,y ≥ (1 + δ̂)Mnθ0

⎞

⎠

⎞

⎠
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= Pr

⎛
⎝

⋃

(x1,...,x|Y|)∈X |Y|

⎛
⎝Poi

⎛
⎝nθ0

∑

y∈Y

PY |X(y|xy)

⎞
⎠

≥ (1 + δ̂)Mnθ0

))

(a)

≤ |X ||Y|
Pr

(
Poi(nθ0M) ≥ (1 + δ̂)Mnθ0

)

(b)

≤ |X ||Y| exp
{
Mnθ0

(
δ̂ − (1 + δ̂) log(1 + δ̂)

)}

(c)

≤ |X ||Y| exp
{
nθ0

(
δ̂ − (1 + δ̂) log(1 + δ̂)

)}
, (62)

where (a) follows from Lemma 15 below and the fact that
for any (x1, . . . , x|Y|) ∈ X |Y|,

∑
y∈Y PY |X(y|xy) ≤ M , (b)

follows from Lemma 13, and (c) follows from the fact that
M ≥ 1.

Lemma 15: Consider λ1 > 0, λ2 > 0 such that λ1 ≥ λ2,
and let N1 ∼ Poi(λ1), and N2 ∼ Poi(λ2). Then, for all k,

Pr(N1 ≥ k) ≥ Pr(N2 ≥ k).

The proof follows from a simple coupling argument and is
omitted. Now let

n⋆ =
log(5/ǫ) + |Y| log |X |

θ0
(
(1 + δ̂) log(1 + δ̂) − δ̂

) . (63)

For such a choice, we get by (61) and (62),

Pr

(
|M̂ − M | ≥ δ̂M

)
≤ 2ǫ/5. (64)

Remark 12: For all δ̂ ∈ (0, 1), δ̂ + (1 − δ̂) log(1 − δ̂) ≥
(1 + δ̂) log(1 + δ̂) − δ̂.
Note that the Poisson estimator behaves identically to the
infinite-sequence estimator unless there exists x ∈ supp(X)
for which Nx = 0 or Ñx > Nx. Therefore, we need to
compute the probability of that event.

Pr

(
there exists x ∈ supp(X) : Ñx > Nx

)

≤
∑

x∈supp(X)

Pr(Ñx > Nx)

≤
∑

x∈supp(X)

Pr (Poi(n⋆θ0) ≥ Poi (n⋆PX(x)))

(a)

≤
∑

x∈supp(X)

exp

{
−

(√
n⋆PX(x) −

√
n⋆θ0

)2
}

(b)

≤
∑

x∈supp(X)

exp

{
−

(√
4n⋆θ0 −

√
n⋆θ0

)2
}

≤ |X |e−n⋆θ′

(c)

≤ ǫ/5, (65)

where (a) follows from the Chernoff bound, (b) follows from
the fact that for all x ∈ supp(X), PX(x) ≥ θ = 4θ0, and
(c) follows from the fact that (1 + δ̂) log(1 + δ̂) − δ̂ < 2 log

2 − 1 < 1 for δ̂ ∈ (0, 1). Similarly,

Pr (there exists x ∈ supp(X) : Nx = 0)

≤
∑

x∈supp(X)

Pr(Nx = 0)

=
∑

x∈supp(X)

e−n⋆PX (x)

≤ |X |e−n⋆θ′

≤ ǫ/5. (66)

It follows from equations (63), (64), (65), (66), and Lemma 14
that

Sδ,ǫ(|X |, |Y|, θ) ≤ 2
log(5/ǫ) + |Y| log |X |

θ0
(
(1 + δ̂) log(1 + δ̂) − δ̂

) .

Remark 13: One can readily verify that n⋆ ≥
log(5/ǫ)/ log(4/ǫ).
Plugging in δ̂ = 1 − e−δ and θ0 = θ/4 yields Theorem 11.

Remark 14: The proof shows that the risk of overestimat-
ing leakage is what controls the sample complexity of the
estimator. If one is merely interested in ensuring that the
estimator does not underestimate the true leakage, which is
often the case in practice, then from (61) and (65) the sample
complexity is

8
(
log(5/ǫ) + log |X |

)

θ
(
(2 − e−δ) log(2 − e−δ) + e−δ − 1

) .

C. Proof of Theorem 10

Let |Y| = k. We will derive a lower-bound on complexity
by considering a subproblem, i.e., we will restrict our attention
to a subset of Pθ

X×Y (cf. (50)). In particular, consider PXY ∈
Pθ
X×Y that satisfy PX(x1) = θ ∈ (0, 1) and PY |X that have

the following form:

PY |X =

⎡
⎢⎢⎢⎣

p1 p2 · · · pk

1/k 1/k · · · 1/k
...

...
...

1/k 1/k · · · 1/k

⎤
⎥⎥⎥⎦ , (67)

where pY = (p1, p2, · · · , pk) is some distribution over Y .
Now, for any distribution pY over Y , define

h(pY ) = log

⎛

⎝
∑

y∈Y

max

{
1

k
, py

}⎞

⎠ . (68)

Therefore,

L(PX ; PY |X) = h(PY |X(·|x1)). (69)

Hence, estimating maximal leakage for this subproblem is the
same as estimating a property of PY |X(·|x1). Let

S̃h
δ,ǫ(|Y|) = inf

f
min{n : N ∼ Poi(n),

Pr
(∣∣h(PY ) − f(Y N )

∣∣ > δ
)

< ǫ, for all PY ∈ PY}, (70)

where PY is the set of all probability distributions on Y , and
Y n is drawn independently according to PY . Since sampling
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Poi(n) from PXY gives Poi(nθ) samples from PY |X(·|x1),
we get

S̃δ,ǫ(|X |, |Y|, θ)) ≥ S̃h
δ,ǫ(|Y|)/θ. (71)

It remains to show that

S̃h
δ,ǫ(k) ≥ c · k

log k
log2 1

δ
. (72)

We shall show this by relating the problem of estimating h(pY )
to the problem of estimating the support size of pY . Consider
any distribution pY with the property that

pY (y) ≥ 1/k for all y such that pY (y) > 0. (73)

Then we have

eh(pY ) =
∑

y∈Y

max

{
1

k
, pY (y)

}

=
∑

y:pY (y)=0

1

k
+

∑

y:pY (y)≥1/k

pY (y)

=
k − |supp(pY )|

k
+ 1

= 2 − |supp(pY )|
k

. (74)

Choose α such that

αδ ≤ log

(
1 +

δ

10

)

for all 0 < δ < 1/2 and let f(·) be an estimator such that

Pr(|h(pY ) − f(Y N )| > αδ) < ǫ

where N̄ is Poisson with mean θn and Y N is i.i.d. PY . Then
we have

Pr

(
|h(pY ) − f(Y N )| > log(1 +

δ

10
)

)
< ǫ

which, since

log

(
1 +

δ

10

)
= min

[
log

(
1 +

δ

10

)
,− log

(
1 − δ

10

)]

implies that

Pr

(
|1 − eh(pY )−f(Y N )| >

δ

10

)
< ǫ. (75)

Since h(·) ≤ 2, we may assume that f(·) ≤ 2, in which case
the previous inequality implies

Pr(|1 − eh(pY )−f(Y N )| > δe−f(Y N )) < ǫ, (76)

which, by defining

f̃(Y N ) =
(
2 − ef(Y N )

)
k,

substituting (74), and rearranging, gives

Pr

(∣∣∣|supp(pY )| − f̃(Y N )
∣∣∣ > δk

)
< ǫ. (77)

Thus f̃(·) estimates the support of pY with accuracy δk with
probability at least ǫ for all pY satisfying (73). It then follows
from, e.g., Wu and Yang [62, Theorem 2] (where the role of

ǫ and δ are reversed) that there exists a constant c such that
for all k and all δ such that 1

k < δ < c0

θn ≥ c
k

log k
log2 1

δ
.

VI. GUESSING FRAMEWORK TO INTERPRET

LEAKAGE METRICS

Finally, we use the guessing framework to provide oper-
ational definitions for commonly used information leakage
metrics. The new operational definitions clarify in which cases
each metric should be used.

In particular, we show that Shannon capacity is suitable
for covert channel analysis rather than side-channel analysis.
Local differential privacy emerges when the system designer
is extremely risk averse (i.e., the probability that U is revealed
should be small for every possible realization y, regardless of
the probability of the latter event). The analysis will naturally
lead us to define an information metric that is intermediate
between maximal leakage and local differential privacy, which
we call maximal realizable leakage (cf. Section VI-B).

On the other hand, maximal correlation captures the mul-
tiplicative decrease, upon observing Y , of the variance of
functions of X . Hence it is more suitable for estimation

problems, rather than guessing problems. This also naturally
leads to a cost-based notion of leakage, which considers
reductions in costs and is investigated in Section VI-E.

A. Shannon Capacity

Shannon justifies the choice of mutual information by
arguing that “From the point of view of the cryptanalyst
[i.e., the adversary], a secrecy system is almost identical
with a noisy communication system” [3]. This argument
is not persuasive, however, because a noisy communication
system (the rate of which is governed by mutual information)
relies on coding, of which there is generally none in the
side-channel setting. One could argue that Shannon is simply
taking a “pessimistic” view by upper-bounding leakage by
assuming that the transmitter is a cooperative participant and
thus willing to code. This reasoning is erroneous, however;
Shannon capacity is generally lower than maximal leakage.
The reason is that Shanon capacity is concerned with (the
size of) message sets that can be reliably reconstructed at
the receiver, whereas leakage does not impose any reliability
constraint. This inspires the following definition.

Definition 7 (Recoverable Leakage): Given ǫ > 0 and a
conditional distribution PY |X with finite alphabets X and Y ,
the recoverable leakage from X to Y is defined as

LC
ǫ (X→Y ) = sup

(U,X):U−X−Y

Pr(U=Û(Y ))≥1−ǫ

log
Pr(U = Û(Y ))

maxu PU (u)
, (78)

where the support of U is finite but of arbitrary size, and Û(Y )
is the MAP estimator.

Theorem 12: For any conditional distribution PY |X with
finite alphabets X and Y and any 0 < ǫ < 1,

lim
n→∞

1

n
LC

ǫ (Xn→Y n) = C(PY |X) =: C, (79)
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where PY n|Xn = Πn
i=1PYi|Xi

, and C(PY |X) is the capacity
of the channel PY |X .

Shannon capacity is a suitable metric for covert chan-
nel analysis, in which there are two adversaries attempting
to (covertly) communicate through PY |X . That is, they are
indeed concerned with sending and reconstructing messages
reliably. To compare with maximal leakage, suppose X has
full support. Then,

L (X→Y )
(a)
= lim

n→∞

1

n
L (Xn→Y n)

(b)
= lim

n→∞

1

n
sup

(U,Xn):
U−Xn−Y n

log
Pr(U = Û(Y n))

maxu PU (u)

≥ lim
n→∞

1

n
sup

(U,Xn):
U−Xn−Y n

Pr(U=Û(Y n))≥1−ǫ

log
Pr(U = Û(Y n))

maxu PU (u)

= C(PY |X),

where (a) follows from the additivity of maximal leakage,
and (b) follows from the fact that L (X→Y ) depends on
PX only through its support. One can readily verify that the
inequality can be strict.

Example 12: Consider X ∼ Ber(p), p ∈ (0, 1/2). If Y
is the output of a BEC(ǫ) (ǫ ∈ (0, 1)) with input X , then
L (X→Y ) = log(2 − ǫ) > (1 − ǫ) log 2 = C(PY |X).

Proof: To show that the left-hand side upper-bounds the
right-hand side, consider

LC
ǫ (Xn→Y n) = sup

(U,Xn):U−Xn−Y n

Pr(U=Û(Y n))≥1−ǫ

log
Pr(U = Û(Y n))

maxu PU (u)

≥ sup
(U,Xn):U−Xn−Y n

Pr(U=Û(Y n))≥1−ǫ
U∼uniform

log |U|+log(1 − ǫ). (80)

Note that the right-hand side of the above equation is exactly
the channel coding setup: U is the uniform message, PXn|U is
the (stochastic) encoding map, PY |X is the memoryless chan-
nel, and ǫ is the allowed average probability of decoding error.
Therefore, for any δ > 0, any U with |U| < 2n(C−δ) is feasible
for large enough n, yielding the lower bound.

For the reverse direction, fix 0 < γ < 1 − ǫ. For each n,
let Un, Xn, and Ûn(·) achieve the supremum in

sup
(U,Xn):U−Xn−Y n

Pr(U=Û(Y n))≥1−ǫ

1

n
log

Pr(U = Û(Y n))

maxu PU (u)

to within γ. The problem of sending Un over the channel
Xn → Y n can be viewed as one of joint source-channel
coding. By [63, Lemma 3.8.2] (which explicitly allows for
stochastic encoding),

ǫ ≥ Pr

(
1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
+γ ≤ 1

n
log

1

PUn
(Un)

)

− e−γn

≥ Pr

(
1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
+ γ ≤ C + 2γ,

1

n
log

1

PUn
(Un)

≥ C + 2γ

)
− e−γn

≥ Pr

(
1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
≤ C + γ

)

− Pr

(
1

n
log

1

PUn
(Un)

< C + 2γ

)
− e−γn.

Now the discrete memoryless channel PY n|Xn satisfies
the “strong converse property” [64, Theorem 5.8.5], which
implies [63, Corollary 3.5.1]

lim
n→∞

Pr

(
1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
≤ C + γ

)
= 1.

Thus for all sufficiently large n, we have

Pr

(
1

n
log

1

PUn
(Un)

< C + 2γ

)
≥ 1 − γ − ǫ > 0.

It follows that, for such n,

min
u

1

n
log

1

PUn
(u)

< C + 2γ

and so
1

n
LC

ǫ (Xn→Y n)

= sup
(U,Xn):U−Xn−Y n

Pr(U=Û(Y n))≥1−ǫ

1

n
log

Pr(U = Û(Y n))

maxu PU (u)

=
1

n
log

Pr(Un = Ûn(Y n))

maxu PUn
(u)

+ γ

≤ 1

n
log

1

maxu PUn
(u)

+ γ

< C + 3γ.

Taking n → ∞ and then γ → 0 yields the upper bound.

B. Maximal Realizable Leakage

We now consider a variation of the definition of maximal
leakage, which captures a different scenario of interest. It will
be also useful for interpreting local differential privacy in
the guessing framework (cf. Section VI-C). In particular,
maximal leakage considers the average guessing performance
of the adversary, Pr(U = Û(Y )), for each U satisfying
U − X − Y since our threat model “tolerates” realizations
y of Y that lead to a high probability of correct guessing
if the corresponding probabilities PY (y)’s are very small.
For scenarios in which such small probability events are still
unacceptable, we need to consider the maximum instead of
the average performance. This is the case, for example, when
U represents an individual’s medical data or when we do not
expect leakage to be concentrated around Y (e.g., Y is a public
database as opposed to a running stochastic process). This
leads to the following definition.

Definition 8 (Maximal Realizable Leakage): Given a joint
distribution PXY on finite alphabets X and Y , the maximal

realizable leakage from X to Y is defined as

Lr (X→Y ) = (81)

sup
U :U−X−Y

log
maxy∈supp(Y ) maxu∈U PU|Y (u|y)

maxu∈U PU (u)
,

where the support U is finite but of arbitrary size.
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Theorem 13: For any joint distribution PXY on finite
alphabets X and Y , the maximal realizable leakage from
X to Y is given by the Rényi Divergence of order infinity,
D∞(PXY ||PX × PY ). That is,

Lr (X→Y ) = max
(x,y)∈X×Y
PXY (x,y)>0

log
PY |X(y|x)

PY (y)
(82)

= D∞(PXY ||PX × PY ).

In contrast, L (X→Y ) = I∞(X ; Y ) = infQY
D∞(PXY ||

PX × QY ). Consequently, Lr (X→Y ) depends on PX (as
opposed to L (X→Y ) which only depends on the support) and
is symmetric in X and Y . Note that it is equal to the maximum
information rate, which is the random variable the expectation
of which is mutual information. It follows straightforwardly
from the definitions that Lr (X→Y ) ≥ L (X→Y ). Moreover,
Lr (X→Y ) cannot be bounded in terms of |X | and |Y|:
consider the BEC example (Example 12) where X ∼ Ber(p)
(p ∈ (0, 1/2)) and Y is the output of a BEC(ǫ) (ǫ ∈ (0, 1))

with input X , then Lr (X→Y ) = log(1/p)
p→0−−−→ ∞.

Furthermore, Lr (X→Y ) exhibits desirable properties of a
leakage metric: it satisfies the data processing inequality, it is
zero if and only X and Y are independent, and it is additive
over independent pairs {(Xi, Yi)}. These properties are known
for Rényi divergence of order ∞ [65].

Remark 15: The fact that using the max in (81) and the
average in (1) both lead to quantities with desirable prop-
erties suggests that we could also consider weighted aver-
ages, i.e., replace the numerator by (

∑
y PY (y)maxu Pα

U|Y

(u|y))1/α, for some α > 0. See also [66].
Proof: That Lr (X→Y ) ≤ D∞(PXY ||PX ×PY ) follows

directly from Proposition 5. For the reverse direction, we again
consider the shattering PU|X (cf. equation (13)). It is a simple
exercise to check that this choice yields the desired lower
bound.

C. Local Differential Privacy

Differential privacy [67] is a widely adopted metric in
the database security literature. Roughly speaking, it requires
that, for any two neighboring databases, the probabilities of
any given output do not differ significantly. Local differential
privacy [35] adapts that notion to the setting of a given
conditional distribution PY |X . It is defined as:

Ldp(X→Y ) = max
y∈Y,

x,x′∈X

log
PY |X(y|x)

PY |X(y|x0)
. (83)

Local differential privacy is known to be pessimistic [35].
It is indeed very strict: for the BEC example (Example 12)
where X ∼ Ber(p) (p ∈ (0, 1/2)) and Y is the output
of a BEC(ǫ) (ǫ ∈ (0, 1)) with input X , Ldp(X → Y ) =
∞. Interestingly, we also noted in the previous section that
limp→0 Lr (X→Y ) = ∞.

So what operational problem is local differential privacy
solving? Similarly to maximal realizable leakage, local dif-
ferential privacy is concerned with worst-case analysis over
the realizations of Y . Moreover, being a function of PY |X ,

it is robust against the worst-case distribution PX . Hence,
differential privacy is suitable for database security problems
in which we do not tolerate low risk, and we do not make any
assumptions about the distribution generating the data. This
yields the following definition.

Definition 9: Given a conditional distribution PY |X from
X to Y , where X and Y are finite alphabets, let

Ldp(X→Y ) = sup
PX

sup
U :U−X−Y

log
maxymaxuPU|Y (u|y)

maxu PU (u)

= sup
PX

Lr (X→Y ) . (84)

Theorem 14: For any conditional distribution PY |X from
X to Y , where X and Y are finite alphabets,

Ldp(X→Y ) = Ldp(X→Y ). (85)

Clearly, Ldp(X → Y ) ≥ Lr (X→Y ) ≥ L (X→Y ). The-
orems 13 and 14 imply that Ldp(X → Y ) = Lr(X→Y )
if and only if X and Y are independent. Thus, Ldp(X →
Y ) = L (X→Y ) if and only if X and Y are independent.
Moreover, an interesting implication of (84) is that one could
incorporate information about the marginal PX by restricting
the optimization set of the sup.

Proof: By Theorem 13, we can rewrite (84) as

Ldp(X→Y ) = sup
PX

max
(x,y)∈X×Y
PXY (x,y)>0

log
PY |X(y|x)

PY (y)
.

The upper bound thus follows from the fact that PY (y) ≥
minx PY |X(y|x). For the lower bound, consider the following.
Let y⋆ be an element achieving the max in (83). Let x0 ∈
argminx PY |X(y⋆|x) and x1 ∈ argmaxx PY |X(y⋆|x). Finally,
for a given α > 0, let PX(x0) = 1 − α and PX(x1) = α.
Then

Ldp(X→Y ) ≥ log
maxx PY |X(y⋆|x)

PY (y⋆)

=log
PY |X(y⋆|x1)

(1− α)PY |X(y⋆|x0)+αPY |X(y⋆|x1)

α→0−−−→ log
PY |X(y⋆|x1)

PY |X(y⋆|x0)
= Ldp(X→Y ).

It is worth noting that Dwork et al. [55] provide an operational
definition closely related to the above definition. In particular,
a simple modification of their result yields that

Ldp(X→Y ) = sup
PX

sup
f :X→{0,1}

y∈Y

∣∣∣∣log

(
Pr(f(X) = 1|Y = y)

Pr(f(X) = 1)

)∣∣∣∣ .

Alternatively, Kairouz et al. [56] give an operational definition
of (ǫ, δ)-differential privacy in the framework of hypothesis
testing. They show that it determines the trade-off between
the probabilities of false alarm and missed detection.
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D. Maximal Correlation

Given a joint distribution PXY , the Hirschfeld-Gebelein-
Rényi maximal correlation [50], [68], [69] ρm(X ; Y ) is
defined as

ρm(X ; Y ) = sup
f,g:

E[f ]=E[g]=0

E[f2]=E[g2]=1

E[f(X)g(Y )]. (86)

Calmon et al. showed that, when the alphabet X is finite,

sup
N,f :X→[N ]

(
sup
f̂(·)

Pr(f(X) = f̂(Y )) − max
k∈[N ]

Pf (k)

)

≤ ρm(X ; Y ),

where the supremum is over deterministic functions
[38, Theorem 9]. However, as we saw in the introduction,
the left-hand side can be zero even when X and Y are
dependent. We posit that maximal correlation is more precisely
capturing the change in variance. That is, we define variance

leakage as follows.
Definition 10 (Variance Leakage): Given a joint distribu-

tion PXY on alphabets X and Y , the variance leakage from
X to Y is defined as

Lv(X→Y ) = sup
U :U−X−Y
var(U)>0

log
var(U)

E[(U − E[U |Y ])2]
. (87)

Lemma 16: For any joint distribution PXY on alphabets
X and Y , the variance leakage from X to Y is given by

Lv(X→Y ) = − log(1 − ρ2
m(X ; Y )), (88)

where ρm(X ; Y ) is the maximal correlation.
As such, maximal correlation is capturing the multiplicative

decrease in variance. If the U of interest is discrete, which
is often the case in practice (e.g., U is a password, a social
security number, etc.), the probability of correct guessing is
arguably the more relevant quantity. This holds true even in the
case of location privacy, in which (as we saw earlier) typical
functions of interest, such as work/home addresses or political
affiliations, are discrete.

Proof: The proof is a simple rewriting of Rényi’s equiva-
lent characterization, taking into account randomized functions
of X . We include it here for completeness. Without loss of
generality, we can restrict the optimization in (87) to U ’s that
satisfy E[U ] = 0, and E[U2] = 1. So, we rewrite

Lv(X→Y ) = sup
U :U−X−Y

E[U ]=0, E[U2]=1

log
1

E[U2] − E[E[U |Y ]2]

= sup
U :U−X−Y

E[U ]=0, E[U2]=1

− log
(
1 − E

[
E[U |Y ]2

])
. (89)

Also, we can rewrite maximal correlation using Rényi’s equiv-
alent characterization [50]:

ρm(X ; Y ) = sup
f :E[f(X)]=0

E[f2(X)]=1

√
E [E[f(X)|Y ]2]. (90)

Now note that

ρ2
m(X ; Y ) = sup

f : E[f ]=0, E[f2]=1

E
[
E[f(X)|Y ]2

]

(a)
≤ sup

U :U−X−Y
E[U ]=0, E[U2]=1

E
[
E[U |Y ]2

]

≤ sup
U :U−X−Y

E[U ]=0, E[U2]=1

sup
h: E[h(U)]=0,

E[h2(U)]=1

E
[
E[h(U)|Y ]2

]

= sup
U :U−X−Y

E[U ]=0, E[U2]=1

ρ2
m(U ; Y )

(b)
≤ ρ2

m(X ; Y ), (91)

where (b) follows from the fact that maximal correlation obeys
the data processing inequality, which can be shown using
standard properties of conditional expectation. Therefore (a)
is in fact an equality. Plugging it in (89) yields our desired
result.

Definition 10, with the restriction that U = X , has also
been recently investigated by Asoodeh et al. [70]. Note that it
can be rewritten as

Lv(X→Y ) = sup
U :U−X−Y
var(U)>0

log
infu E[(U − u)2]

infu(·) E[(U − u(Y ))2]
. (92)

Hence, Lv(X→Y ) measures the reduction in cost incurred by
the adversary, where cost is measured by the mean squared
error. In the next section, we consider a natural extension in
which we do not assume the cost function is known a priori.

E. Maximal Cost Leakage

In this section, we introduce a leakage metric that is dual
to maximal leakage. Whereas maximal leakage considers the
maximum gain that the adversary achieves, we could alterna-
tively consider the maximum reduction in cost they incur.

Definition 11 (Maximal Cost Leakage): Given a joint dis-
tribution PXY on alphabets X and Y , the maximal cost

leakage from X to Y is defined as

Lc (X→Y ) = sup
U :U−X−Y

Û, d:Û×U→R+

log
inf û∈Û E[d(U, û)]

inf û(·) E[d(U, û(Y ))]
, (93)

where U takes value in a finite (but arbitrary) alphabet, and
0
0 = 1 by convention.

It is important to note that the gain-based approach is
more operationally meaningful (for side-channel analysis) than
the cost-based approach. To illustrate this, suppose d is the
Hamming distortion and consider

sup
U :U−X−Y

log
1 − maxu∈U PU (u)

1 − supû(·) Pr(U = û(Y ))
. (94)

Recall that, in the definition of maximal leakage, we con-
sidered the ratio of the guessing probabilities (as opposed
to the difference) because we are typically interested in
functions that are hard to guess (e.g., passwords). However,
the quantity in (94) is much more sensitive to changes
for functions that are easy to guess: suppose for some U ,
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maxu PU (u) = 1 − 10−9 and supû(·) Pr(U = û(Y )) = 1,
then the ratio in (94) is ∞. On the other hand, if maxu

PU (u) = 10−9 and supû(·) Pr(U = û(Y )) = 10−3,
the ratio is only ≈ 1.001 despite the significant change.
More generally, it is more intuitive to associate a gain to the
adversary if they compromise the system, rather than a cost
if they fail to do so2 (an adversary does not “lose” if the
system is not compromised). Even in the rate-distortion-based
approach to information leakage, the more robust metric is the
probability that the adversary incurs a small distortion [28]
rather than (say) the expected value of the distortion. That is,
the probability-metric falls under the gain approach (similar to
maximal locational leakage (cf. Definition 3) or maximal gain
leakage (cf. Definition 5)), albeit the gain is defined indirectly
through a distortion function.

Nevertheless, maximal cost leakage admits a simple form
for discrete X and Y , given in the following theorem.

Theorem 15: For any joint distribution PXY on finite alpha-
bets X and Y , the maximal cost leakage from X to Y is
given by

Lc (X→Y ) = − log
∑

y∈Y

min
x∈X :

PX (x)>0

PY |X(y|x). (95)

It is worth noting that Lc (X→Y ), similarly to maximal
leakage, depends on PXY only through PY |X and the support
of PX . Moreover, a relation analogous to (2) holds for
Lc (X→Y ):

Lc (X→Y ) = inf
QY

D∞(PX × QY ||PXY ). (96)

The proofs for Theorem 15 and the above relation are given
in Appendices D-A and D-B, respectively. The following
corollary, the proof of which is given in Appendix D-C,
summarizes useful properties of Lc (X→Y ).

Corollary 5: For any joint distribution PXY on finite alpha-
bets X and Y ,

1) (Data Processing Inequality) If the Markov chain X −
Y − Z holds for a discrete random variable Z , then
Lc (X→Z) ≤ min{Lc (X→Y ) ,Lc (Y→Z)}.

2) Lc (X→Y ) = 0 iff X and Y are independent.
3) (Additivity) If {(Xi, Yi)}ℓ

i=1 are mutually independent,
then

Lc
(
Xℓ

1→Y ℓ
1

)
=

ℓ∑

i=1

Lc (Xi→Yi) .

4) For any non-trivial deterministic law PY |X (i.e., |{y :
PY (y) > 0}| > 1), Lc(X→Y ) = +∞.

5) Lc (X→Y ) is not symmetric in X and Y .
6) Lc (X→Y ) ≤ Ldp(X→Y ).
7) Lc (X→Y ) is convex in PY |X for fixed PX .

Thus maximal cost leakage satisfies axiomatic properties of
a leakage measure. However, it cannot be bounded in terms
of |X | and |Y|. Indeed, even if X is a single bit, X ∼ Ber(p)

2The cost and gain approaches may be equivalent if we are interested in the
difference between the incurred cost (or achieved gain) when Y is observed
versus when no observations are made. This is not the case, however, if we
are considering the ratio instead of the difference.

for p ∈ (0, 1), Lc (X→X) = +∞. We evaluate Lc (X→Y )
for some other examples.

Example 13: If X ∼ Ber(q), 0 < q < 1, and Y is the
output of a BSC with input X and parameter p, 0 ≤ p ≤ 1/2,
then Lc (X→Y ) = − log(2p).

Example 14: If X ∼ Ber(q), 0 < q < 1, and Y is the
output of a BEC with input X and parameter ǫ, 0 ≤ ǫ < 1,
then Lc (X→Y ) = − log(ǫ), and Lc(Y→X) = +∞.

Remark 16: One can note that in each of the examples
above, Lc (X→Y ) ≥ L (X→Y ). This is always true when
|X | = |Y| = 2, but it is not necessarily true in gen-
eral. As a counter example, say X has full support and

PY |X =

⎡

⎣
0.2 0.5 0.3
0.3 0.4 0.3
0.2 0.4 0.4

⎤

⎦. Then exp{L (X→Y )} = 1.2 and

exp{Lc (X→Y )} = 1/0.9 = 1.1̄.
1) Comparison With Maximal Correlation: Definition 11

restricted U to be discrete, but the proof of the upper bound
in Theorem 15 does not need this assumption. That is, if we
take the supremum over all real-valued U ’s, the theorem still
holds. Comparing with (92), we get Lc (X→Y ) ≥ Lv(X→Y ).
We can rewrite this inequality as follows.

Corollary 6: For any joint distribution PXY on finite alpha-
bets X and Y ,

ρm(X ; Y ) ≤
√

1−e−Lc(X→Y ). (97)

Consequently, for a fixed conditional distribution PY |X ,

sup
PX

s⋆(X ; Y ) ≤ 1 −
∑

y∈Y

min
x∈X

PY |X(y|x),

where s⋆(X ; Y ) := supU :U−X−Y
I(U ;Y )
I(U ;X) is the strong data

processing coefficient.
Note that inequality (97) is tight in the extremal cases, i.e., if

X and Y are independent, if Y is a deterministic function
of X , or if X is a deterministic function of Y (it can be
readily verified in this case that

∑
y minx PY |X(y|x) = 0,

unless X or Y is determinstic). The second inequality fol-
lows from the fact that supPX

s⋆(X ; Y ) = supPX
ρ2

m(X ; Y )
[71, Theorem 8].

2) Maximal Realizable Cost: Similarly to the modification
of maximal leakage to maximal realizable leakage, we could
consider the minimum cost incurred at the adversary, instead of
the average cost. We show next that this yields the maximum
of the negative of the information rate. Maximizing it over the
input distribution also yields local differential privacy.

Definition 12 (Maximal Realizable Cost): Given a joint
distribution PXY on alphabets X and Y , the maximal

realizable cost from X to Y is defined as

Lrc(X→Y ) = (98)

sup
U :U−X−Y

Û , d:Û×U→R+

log
inf û∈Û E[d(U, û)]

miny∈supp(Y ) inf û∈Û E[d(U, û)|Y = y]
,

where Û is a finite alphabet, and 0
0 = 1 by convention.

Theorem 16: For any joint distribution PXY on finite
alphabets X and Y , the maximal realizable cost from X
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to Y is given by the Rényi divergence of order infinity,
D∞(PX × PY ||PXY ). That is,

Lrc(X→Y ) = log max
x,y:

PX (x)PY (y)>0

PY (y)

PY |X(y|x)
(99)

= D∞(PX × PY ||PXY ).

Similarly to maximal realizable leakage, Lrc(X→Y ) depends
on PX not only through its support. They are also analogous
in that the former is equal to D∞(PXY ||PX × PY ) and the
latter is equal to D∞(PX × PY ||PXY ).

Corollary 7: For any conditional distribution PY |X from
X to Y , where X and Y are finite alphabets,

max
PX

Lrc(X→Y ) = Ldp(X→Y ). (100)

A consequence of Theorem 14 and Corollary 7 is that local dif-
ferential privacy is concerned with both worst-case reductions
in costs incurred and worst-case increases in gains achieved
at the adversary. The proofs of Theorem 16 and Corollary 7
are given in Appendices D-D and D-E, respectively.

VII. DISCUSSION

It is worth noting that Sibson’s mutual information of infi-
nite order (2) has appeared in the data compression literature as
the Shtarkov sum [72], which evaluates the worst-case regret.
More recently, it has also been used as a complexity measure
in the study of communication complexity [73].

If X is binary and not deterministic and Y = X , then
the maximal leakage from X to Y is one bit. Thus if
X represents, say, whether Alice has a stigmatized disease,
and Alice reveals this information to Bob, maximal leakage
would declare that only one bit has been leaked to him.
Maximal leakage would likewise declare that one bit has been
leaked if Alice revealed the first bit of her phone number
or whether she was born on an even- or odd-numbered day.
Thus maximal leakage fails to capture the gravity of revealing
highly-confidential quantities if those quantities can only take
a few possible values. The reason is simply that maximal
leakage measures the extent to which randomized functions
of X that are difficult to guess a priori become easy to guess
after observing Y . Any binary-valued function can be guessed
a priori with probability at least 1/2. Therefore the increase
in the guessing probability upon observing Y cannot be large.
According to maximal leakage, revealing whether Alice has
a particular disease is not a concern because Bob already
has a reasonably high probability of guessing correctly even
without any information from Alice. Thus maximal leakage
is an appropriate metric when the goal is to prevent Bob
from guessing quantities, such as passwords or keys, that are
a priori hard to guess. Other metrics, such as differential
privacy (83) are more appropriate in the above scenario in
which revealing a single bit represents a significant breach.

Following the publication of an early version of this work,
maximal leakage was used as a privacy metric in the context
of hypothesis testing [74], and in a more general setup of
privacy-utility trade-offs [75]. Variations on the definition of
maximal leakage that yield Sibson mutual information of finite
orders have also been considered [66].

APPENDIX A
PROOFS FOR SECTION II

A. Proof of Lemma 1

1) Consider any discrete U satisfying U−X−Y and define

G(U ; Y ) = supÛ :U−Y −Û log
Pr(U=Û)

maxu∈U PU (u) . Clearly if
U −X −Y −Z holds, then G(U ; Z) ≤ G(U ; Y ). So if
X − Y − Z holds,

L (X→Z) = sup
U :U−X−Z

G(U ; Z)

= sup
U :U−X−Y −Z

G(U ; Z)

≤ sup
U :U−X−Y −Z

G(U ; Y )

= L (X→Y ) ,

Similarly,

L (X→Z) = sup
U :U−X−Z

G(U ; Z)

= sup
U :U−X−Y −Z

G(U ; Z)

≤ sup
U :U−Y −Z

G(U ; Z)

= L (Y→Z) .

2) If Y is discrete, then for any discrete U

sup
Û :U−X−Y −Û

Pr

(
U = Û

)

=
∑

y∈supp(Y )

max
u∈U

PUY (u, y)

≤
∑

y∈supp(Y )

max
u∈U

PU (u)

= |supp(Y )|max
u∈U

PU (u).

Hence for any U satisfying U − X − Y ,
G(U ; Y ) ≤ log |supp(Y )| and subsequently
L (X→Y ) ≤ log |supp(Y )|.

3) If X is discrete, then L (X→Y ) ≤ L (X→X) ≤
log |supp(X)|, where the first inequality follows from
1) and the second from 2).

4) If X and Y are independent, then any U satisfying U −
X −Y is independent from Y . Hence G(U ; Y ) = 0 for
all U , which implies L (X→Y ) = 0. The non-negativity
is obvious.

B. Proof of Corollary 1

1) If L (X→Y ) = 0, then
∑

y∈Y maxx∈supp(X)

PY |X(y|x) = 1. Hence,
∑

y∈Y maxx∈supp(X) PY |X

(y|x) =
∑

y∈Y PY (y). Since maxx∈supp(X) PY |X

(y|x) ≥ PY (y) for every y ∈ Y , it follows that
maxx∈supp(X) PY |X(y|x) = PY (y) for all y ∈ Y .
Therefore, X and Y are independent. The reverse direc-
tion follows from Lemma 1.

2) The additivity property is known for I∞
(X ; Y ) [32], [33].
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3) Since
∑

y∈Y

max
x∈X

PY |X(y|x) ≤
∑

y∈Y

∑

x∈X

PY |X(y|x) = |X |,

equality holds if and only if for all y ∈ Y ,
maxx∈X PY |X(y|x) =

∑
x∈X PY |X(y|x). This condi-

tion holds if and only if for all y ∈ Y , there exists a
unique xy such that PY |X(y|xy) > 0. Finally, the latter
condition holds if and only if for all y ∈ Y , there exists
xy such that PX|Y (xy|y) = 1.

4) The equality is straightforward to verify.
5) The asymmetry is illustrated in Example 5.
6) Convexity in PY |X follows from the fact that for each

y ∈ Y , maxx PY |X(y|x) is convex in PY |X .
7) Concavity in PX follows from the fact that for any

λ ∈ (0, 1) and any two distributions P1 and P2 on X ,
supp(λP1 + (1 − λ)P2) = supp(P1) ∪ supp(P2).

C. Proof of Lemma 2

Consider the following chain of inequalities.

I(X ; Y ) =
∑

x∈X ,y∈Y

PXY (x, y) log
PY |X(y|x)

PY (y)

=
∑

x∈X ,y∈Y:
PXY (x,y)>0

PXY (x, y) log
PY |X(y|x)

PY (y)

(a)
≤ log

∑

x∈X ,y∈Y:
PXY (x,y)>0

PXY (x, y)
PY |X(y|x)

PY (y)

= log
∑

x∈X ,y∈Y:
PXY (x,y)>0

PX|Y (x|y)PY |X(y|x)

(b)
≤ log

∑

x∈X ,y∈Y:
PXY (x,y)>0

PX|Y (x|y) max
x′∈X :

PX (x′)>0

PY |X(y|x0)

= log
∑

y∈Y:
PY (y)>0

max
x∈X :PX(x)>0

PY |X(y|x)

(c)
= log

∑

y∈Y

max
x∈X :PX(x)>0

PY |X(y|x)

= L(X → Y ),

where (a) is Jensen’s inequality, and (c) follows from the
fact that PY (y) = 0 implies that maxx∈X :PX(x)>0 PY |X

(y|x) = 0. Now, note that (b) is an equality if and only if
condition 1) holds. Given condition 1), it can be seen that con-
dition 2) is necessary and sufficient for (a) to become equality
(by expanding PY (y) =

∑
x:PXY (x,y)>0 PX(x)PY |X(y|x)).

APPENDIX B
PROOFS FOR SECTION III

A. Proof of Theorem 4

To show L(k) (X→Y ) ≥ L (X→Y ), we consider an
arbitrary PU|X and construct PV |X such that L(k) (X→Y )

[V ] = L (X→Y ) [U ]. In particular, for a given PU|X and
associated alphabet U , let

V =
⋃

u∈U

{(u, 1), (u, 2), . . . , (u, k)},

and PV |X(v|x) = PV |X((av, bv)|x) = PU|X(av|x)/k.

Then the probability of correctly guessing V with k guesses
after observing Y is:

sup
X−Y −(V̂i)k

i=1

Pr(V = V̂1 ∨ · · · ∨ V = V̂k)

=
∑

y∈Y

max
v1,v2,...,vk

vi 6=vj ,i6=j

k∑

i=1

∑

x∈X

PX(x)PV |X(vi|x)PY |X(y|x)

=
∑

y∈Y

k∑

i=1

max
vi 6=v1,...,vi−1

∑

x∈X

PX(x)PV |X(vi|x)PY |X(y|x)

(a)
=

∑

y∈Y

max
u

∑

x∈X

PX(x)PU|X (u|x)PY |X(y|x), (101)

where (a) follows by setting vi = (u⋆, i), where

u⋆ = argmax
u∈U

∑

x∈X

PX(x)PU|X(u|x)PY |X(y|x).

Now note that (101) is simply the probability of guessing U
correctly with a single guess after observing Y . A similar
argument shows that, with no Y observation, the probability
of guessing V correctly with k guesses is equal to the
probability of guessing U correctly with a single guess,
hence L(k) (X→Y ) [V ] = L (X→Y ) [U ], which establishes
L(k) (X→Y ) ≥ L (X→Y ).

It remains to show L (X→Y ) ≥ L(k) (X→Y ). For
any PV |X , we construct PU|X such that L (X→Y ) [U ] =
L(k) (X→Y ) [V ]. So let PV |X be given, with associated
alphabet V , and let ℓ � |V| ≥ k. Now, let

U = {S ⊂ V : |S| = k},
and PU|X(u|x) = c

∑

v∈u

PV |X(v|x),

where c = 1/
(

ℓ−1
k−1

)
. Then, observing Y , the probability of

guessing U correctly with a single guess is

sup
X−Y −Û

Pr(U = Û)

=
∑

y∈Y

max
u∈U

∑

x∈X

PX(x)PU|X (u|x)PY |X(y|x)

=
∑

y∈Y

max
u∈U

∑

x∈X

PX(x)
∑

v∈u

PV |X(v|x)PY |X(y|x)c

= c
∑

y∈Y

max
v1,v2,...,vk

vi 6=vj ,i 6=j

∑

x∈X

k∑

i=1

PX(x)PV |X(vi|x)PY |X(y|x),

which is the probability, normalized by c, of guessing V
correctly with k guesses after observing Y . A similar argument
shows that, with no Y observation, the probability of guessing
U correctly with a single guess is equal to the probability,
normalized by c, of guessing V correctly with k guesses,
hence L (X→Y ) [V ] = L(k) (X→Y ) [U ], which establishes
L (X→Y ) ≥ L(k) (X→Y ).
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B. Proof of Theorem 6

Assume, without loss of generality, that X and Z have
full marginal support. To show that the left-hand side is
upper-bounded by the right-hand side, fix PU|XZ and consider
the following.

Pr(U = Û(Y, Z))

Pr(U = Ũ(Z))
=

∑
z p(z)

∑
y p(y|z)maxu p(u|y,z)

∑
z p(z)maxu p(u|z)

≤ max
z

∑
y p(y|z)maxu p(u|y, z)

maxu p(u|z)
.

Then by noting that the ratio being maximized is exp{L(X→
Y |Z = z)}, we get

sup
U :U−(X,Z)−Y

Pr(U = Û(Y, Z))

Pr(U = Ũ(Z))

≤ max
z

∑

y

max
x:PX|Z(x|z)>0

PY |XZ(y|x, z).

To get the reverse inequality, let ǫn = 1/n for n ∈ N,
z⋆ ∈ argmax

∑
y maxx:PX|Z(x|z)>0 PY |XZ(y|x, z), and p⋆ =

minx:p(x|z⋆)>0 p(x|z⋆). Construct PU|XZ as follows. If Z =
z⋆, then PU|X,Z=z⋆ is the “shattering” conditional with respect
to the distribution PX|Z=z⋆ (cf. equation (13)). If Z �= z⋆,
then U ∼ Unif([n]), independent of X . Using Proposition 4,
we get the equality shown at the bottom of this page. Letting
n → ∞ (i.e., ǫn → 0) yields our lower bound.

C. Proof of Corollary 2

1) The data processing inequality follows directly from the
definition as in the unconditional case.

2) The upper bound follows from Theorem 6 and Lemma 1.
3-4) The independence and additivity properties follow

straightforwardly from the theorem.
5) I(X ; Y |Z) ≤ maxz∈supp(Z) I(X ; Y |Z = z) ≤

maxz∈supp(Z) L (X→Y |Z = z) = L (X→Y |Z).
6) The asymmetry follows immediately from the uncondi-

tional case.
7) Let Z − X − Y be a Markov chain. Then

L (X→Y |Z)

= log

(
max

z∈supp(Z)

∑

y

max
x:PX|Z(x|z)>0

PY |XZ(y|x, z)

)

= log

(
max

z∈supp(Z)

∑

y

max
x:PX|Z(x|z)>0

PY |X(y|x)

)

≤ log

(
∑

y

max
x:PX (x)>0

PY |X(y|x)

)

= L (X→Y ) ,

where the inequality follows from the fact that
supp(X) ⊇ supp(X |Z = z) for any z ∈ supp(Z).
Note that the inequality becomes an equality if for some
z ∈ supp(Z), supp(X) = supp(X |Z = z).

8)

L (X→(Y, Z)) − L (X→Z)

= log

∑
z,y maxx:PX(x)>0 PY Z|X(y, z|x)
∑

z maxx:PX(x)>0 PZ|X(z|x)

≤ log max
z∈supp(Z)

∑
y maxx:PX(x)>0 PY Z|X(y, z|x)

maxx:PX (x)>0 PZ|X(z|x)

=log max
z∈supp(Z)

∑
y maxx:PX(x)>0 P (z|x)P (y|x, z)

maxx:PX(x)>0 P (z|x)

(a)
=log max

z∈supp(Z)

∑
y maxx:P (x|z)>0 P (z|x)P (y|x, z)

maxx:P (x)>0 P (z|x)

= log max
z∈supp(Z)

∑

y

max
x:PX|Z(x|z)>0

PY |XZ(y|x, z)·

PZ|X(z|x)

maxx′:PX (x′)>0 PZ|X(z|x0)

≤ log max
z∈supp(Z)

∑

y

max
x:PX|Z(x|z)>0

PY |XZ(y|x, z)

= L (X→Y |Z) ,

where (a) follows from the fact that PX|Z(x|z) = 0,
PX(x) > 0 and PZ(z) > 0 implies that PZ|X(z|x) = 0,
so that the maximum is achieved outside this set.

D. Proof of Theorem 7

Proof of 1): To show that the right-hand side upper-bounds
the left-hand side, fix any PU|X , and consider the following

sup
Û(Y )

Pr(U = Û(Y ))

=

∫

Y

max
u∈U

∫

X

PU|X(u|x)PXY (dxdy)

=

∫

Y

max
u∈U

∫

X

PU|X(u|x)f(x, y)PX(dx)PY (dy)

≤
∫

Y

max
u∈U

∫

X

P (u|x)(ess-supPX
f(X, y))PX(dx)PY (dy)

Pr(U = Û(Y, Z))

Pr(U = Ũ(Z))
=

∑
z 6=z⋆ p(z)

∑
y p(y|z)maxu p(u|y, z) + p(z⋆)

∑
y p(y|z⋆)maxu p(u|y, z⋆)

∑
z 6=z⋆ p(z)maxu p(u|z) + p(z⋆)maxu p(u|z⋆)

=

∑
z 6=z⋆ p(z)ǫn + p(z⋆)p⋆

∑
y maxx:PX|Z(x|z⋆)>0 PY |XZ(y|x, z⋆)

∑
z 6=z⋆ p(z)ǫn + p(z⋆)p⋆

=
(1 − p(z⋆))ǫn + p(z⋆)p⋆

∑
y maxx:PX|Z(x|z⋆)>0 PY |XZ(y|x, z⋆)

(1 − p(z⋆))ǫn + p(z⋆)p⋆
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=

∫

Y

(ess-supPX
f(X, y))(max

u∈U

∫

X

P (u|x)PX(dx))PY (dy)

= (max
u∈U

PU (u))

∫

Y

(ess-supPX
f(X, y))PY (dy).

To show the reverse direction, we will show it first for
discrete X , and then extend the result by discretizing more
general X’s. Suppose X has a finite alphabet. In this case,
σ(X) is generated by a finite set, and PXY ≪ PX ×PY since
I(X ; Y ) ≤ H(X) < ∞. Without loss of generality, suppose
X has full support. Consider the “shattering” PU|X . Recall:
p⋆ = minx∈X PX(x). For each x ∈ X , let k(x) = PX(x)/p⋆,
and let U =

⋃
x∈X{(x, 1), (x, 2), . . . , (x, ⌈k(x)⌉)}. For each

u = (iu, ju) ∈ U and x ∈ X , let PU|X(u|x) be:

PU|X((iu, ju)|x) =
⎧
⎪⎨

⎪⎩

p⋆

PX(x) , iu = x, 1 ≤ ju ≤ ⌊k(x)⌋,
1 − (dk(x)e−1)p⋆

PX (x) , iu = x, ju = ⌈k(x)⌉,
0, iu �= x, 1 ≤ ju ≤ ⌈k(iu)⌉.

Then

sup
Û(Y )

Pr(U = Û(Y ))

=

∫

Y

max
(iu,ju)∈U

∑

x∈X

P ((iu, ju)|x)f(x, y)PX (x)PY (dy)

=

∫

Y

max
(iu,1)∈U

p⋆f(iu, y)PY (dy)

= p⋆

∫

Y

max
x∈X

f(x, y)PY (dy).

The proof for the discrete case is completed by noticing that
p⋆ = maxu PU (u).

Now, consider the more general case. Let {An}∞n=1 be a
countable collection of sets generating σ(X). We will prove
the result by considering a series of discretizations of X , each
of which is a refinement of the previous one. To that end, let Sn

be the finite partition generating σ(∪n
i=1Ai). It can be readily

verified that Sn+1 is a refinement of Sn. Let Nn = |Sn|,
Sn = {Sn,1, Sn,2, · · · , Sn,Nn

}, and define

Un(X) =

Nn∑

i=1

i I{X ∈ Sn,i},

where I{.} is the indicator function. Then we get
L(X → Y ) ≥ L(Un → Y ) since Un − X−Y is a Markov
chain, and the data processing inequality holds by Lemma 1.
By the earlier result for finite X , we have

L(Un → Y ) = log

∫

Y

sup
un:PUn (un)>0

fn(un, y)PY (dy),

where fn(un, y) =
dPUnY

d(PUn×PY ) . We next compute fn(un, y).
Let A ⊆ Un × Y . Then

PUn,Y (A)

=

∫

Y

∑

un

I{(un, y) ∈ A}·
∫

X

PUn|X(un|x)f(x, y)PX (dx)PY (dy)

=

∫

Y

∑

un

I{(un, y) ∈ A}·
(∫

Sn,un

f(x, y)PX(dx)

)
PY (dy)

=

∫

Y

∑

un:PUn (un)>0

I{(un, y) ∈ A}·

(∫
Sn,un

f(x, y)PX(dx)
∫

Sn,un
PX(dx)

)
PUn

(un)PY (dy),

so that

fn(un, y) =

∫
Sn,un

f(x, y)PX(dx)
∫

Sn,un
PX(dx)

.

Let Sn(x) be the set in Sn containing x. Then we can view
fn(un, y) as a function of (x, y):

fn(x, y) =

∫
Sn(x)

f(x, y)PX(dx)
∫

Sn(x)
PX(dx)

.

We can rewrite fn(x, y) = E[f(X, y)|X ∈ Sn(x)], so that

fn(X, y) = E[f(X, y)|σ(Sn)]. PX − a.s. (102)

Since Sn’s are refinements, fn(X, y) is a martingale process,
and it follows by Levy’s upward Theorem [76, Theorem 14.2]
that

fn(X, y)
a.s.→ E [f(X, y)|σ (∪∞

i=1Si)] . (103)

Then

E [f(X, y)|σ (∪∞
i=1Si)] = E [f(X, y)|σ (∪∞

i=1Ai)]

= E [f(X, y)|σ (X)]
a.s.
= f(X, y). (104)

Moreover,

L(X → Y ) ≥ lim sup
n→∞

L(Un → Y )

= lim sup
n→∞

log

∫

Y

sup
u:

PUn (un)>0

fn(un, y)PY (dy)

= lim sup
n→∞

log

∫

Y

sup
x:

PX (Sn(x))>0

fn(x, y)PY (dy).

(105)

Since Sn+1 is a refinement of Sn, the integrand is nondecreas-
ing with n. Therefore, by the monotone convergence theorem,

L(X → Y ) ≥ log

∫

Y

lim
n→∞

sup
x:PX(Sn(x))>0

fn(x, y)PY (dy).

(106)

Then it remains to show that

lim
n→∞

sup
x:PX(Sn(x))>0

fn(x, y) ≥ ess-supPX
f(X, y) (107)

for all y. To that end, let B = {α : PX(f(X, y) > α) >
0}. Consider r ∈ B and let Er = {x : f(x, y) > r}.
Then PX(Er) > 0. Therefore, by (103) and (104), fn(X, y)
converges almost everywhere to f(X, y) on Er. By Egoroff’s
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Theorem [77, Theorem 7.12], for every δ > 0, there exists
E0

δ such that PX(E0
δ) < δ and fn converges uniformly to

f on Er\E0
δ. Call the latter set Er\δ. So fix δ > 0 small

such that PX(Er\δ) > 0. For each n, let Sn(Er\δ) be a
collection of sets in Sn satisfying: ∪S∈Sn(Er\δ) ⊇ Er\δ and
S ∈ Sn(Er\δ) ⇒ S ∩ Er\δ �= ∅. Then there must exist
S ∈ Sn(Er\δ) satisfying P (S) > 0. Denote the latter set by
Sn(Er\δ). Hence,

lim
n→∞

sup
x:PX(Sn(x))>0

fn(x, y)
(a)
≥ lim

n→∞
sup

x∈Sn(Er\δ)

fn(x, y)

(b)
≥ lim

n→∞
inf

x∈Er\δ

fn(x, y)

(c)
= inf

x∈Er\δ

f(x, y)

≥ r,

where (a) follows from the fact that PX(Sn(Er\δ)) > 0,
(b) follows from the fact that Sn(Er\δ) ∩ Er\δ �= ∅, and
(c) follows from the fact that fn(x, y) converges uniformly to
f on Er\δ . Finally, since r was chosen arbitrarily from B,
we get

lim
n→∞

sup
x:PX (Sn(x))>0

fn(x, y) ≥ sup B = ess-supPX
f(X, y),

(108)

as desired.
Proof of 2): If absolute continuity does not hold, then

I(X ; Y ) = +∞, and there exists a sequence of discretizations
(Xn, Yn) such that I(Xn; Yn) → +∞ (e.g., [64, p. 37]). The
result then follows by noting that L (X→Y ) ≥ L (Xn→Yn) ≥
I(Xn; Yn).

E. Proof of Lemma 7

Suppose PX1 Y1 ≪ PX1 × PY1 and let dPX1 Y1 =
f1(x, y)d(PX1 × PY1). Then for every A ∈ σX and B ∈ σY ,

∫

X

[∫

Y

1(y ∈ B)dµ(x, dy)

]
1(x ∈ A)dPX1 (dx)

=

∫

X

[∫

Y

1(y ∈ B)f1(x, y)dPY1 (dy)

]
1(x ∈ A)dPX1 (dx).

Since this holds true for all A we must have, PX1–a.s.,
∫

Y

1(y ∈ B)dµ(x, dy) =

∫

Y

1(y ∈ B)f1(x, y)dPY1 (dy).

(109)
Hence µ(x, ·) ≪ PY1 and f1(x, y) = dµ(x,·)

dPY1
(y). Let PX be

an arbitrary representative of the equivalence class of PX1 and
QY be any measure satisfying PY1 ≪ QY . Then

L (X1→Y1)

(a)
= log

∫

Y

ess-supPX1

(
dµ(X, ·)

dPY1

(y)

)
PY1(dy)

= log

∫

Y

ess-supPX1

(
dµ(X, ·)

dPY1

(y)

)
dPY1

dQY
(y)QY (dy)

= log

∫

Y

ess-supPX1

(
dµ(X, ·)

dQY
(y)

)
QY (dy)

(b)
= log

∫

Y

ess-supPX

(
dµ(X, ·)

dQY
(y)

)
QY (dy),

where (a) follows from Theorem 7, and (b) follows from the
fact that for any function h : X → R, ess-supPX

h(X) =
ess-supPX1

h(X) when PX1 ≡ PX . Now consider PX2 satis-

fying PX2 ≡ PX1 and let g(x) =
dPX2

dPX1
. For any set A ∈ σXY ,

PX2 Y2(A) =

∫

X

∫

Y

I{(x, y) ∈ A}µ(x, dy)PX2 (dx)

=

∫

X

∫

Y

g(x)I{(x, y) ∈ A}µ(x, dy)PX1 (dx),

hence PX2 Y2 ≪ PX1 Y1 . Similarly, for any set B ∈ σY ,

PY2(B) =

∫

X

∫

Y

I{y ∈ B}µ(x, dy)PX2 (dx)

=

∫

X

∫

Y

I{y ∈ B}f1(x, y)PY1 (dy)PX2 (dx),

and

PY1(B) =

∫

X

∫

Y

I{y ∈ B}f1(x, y)PY1 (dy)PX1 (dx).

Hence PY2(B) = 0 implies that for (PX2 × PY1)-almost all
(x, y), I{y ∈ B}f1(x, y) = 0. Since PX1 ≪ PX2 , this implies
that for (PX1 × PY1)-almost all (x, y), I{y ∈ B}f1(x, y) =
0 [78, p. 22, Ex. 19]. Hence PY1(B) = 0, which implies that
PY1 ≪ PY2 . Therefore, we get

PX2 Y2 ≪ PX1 Y1 ≪ PX1 × PY1

(a)
≪ PX2 × PY2 ,

where (a) follows from the fact that PX1 ≪ PX2 and
PY1 ≪ PY2 . By symmetry we also get PY2 ≪ PY1 , hence
PY1 ≡ PY2 . By choosing PX1 to be the representative of
the equivalence classes of PX2 and noting that PY2 ≪ PY1 ,
the first part of the lemma yields

L (X2→Y2) = log

∫

Y

ess-supPX1

(
dµ(X, ·)

dPY1

)
PY1(dy)

= L (X1→Y1) .

APPENDIX C
PROOF OF EQUATION (39)

Let PY |X =

[
1 − W10 W10

W01 1 − W01

]
(where the first column

corresponds to y = 0, the second to y = 1). Dropping the
logarithm, we can rewrite the problem as:

minimize max{1 − W10, W01} + max{W10, 1 − W01}
(110)

subject to(1 − p)W10+ pW01 ≤ D, 0 ≤ W10, W01 ≤ 1.

Now note that

W10 + W01

(a)
≤ 1 − p

p
W10 + W01

=
1

p
((1 − p)W10 + pW01)

(b)
≤ D

p
(c)
≤ 1, (111)
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where (a) follows because p ≤ 1/2, (b) follows from the con-
straint in (110), and (c) follows because D ≤ p. Using (111),
we can rewrite (110) as

minimize 2 − (W10 + W01) (112)

subject to(1 − p)W10+ pW01 ≤ D, 0 ≤ W10, W01 ≤ 1.

Therefore, we need to maximize (W10 + W01). By (111),
the sum is upper-bounded by D/p. The upper bound can be
achieved by setting

W ⋆
10 = 0 and W ⋆

01 = D/p, (113)

which clearly satisfies the constraint in (110). Therefore,

min
PY |X :

E[d(X,Y )]≤D

L (X→Y ) = log2(2 − D/p) (bits). (114)

APPENDIX D
PROOFS FOR SECTIONS VI-E

A. Proof of Theorem 15

To show that the left-hand side is upper-bounded by the
right-hand side, fix U , Û and d, and consider:

inf
û(·)

E[d(U, û(Y ))]

=
∑

y∈Y

inf
û

PY (y)E[d(U, û)|Y = y]

=
∑

y∈Y

inf
û

∑

x∈supp(X)

PX(x, y)E[d(U, û)|X = x, Y = y]

=
∑

y∈Y

inf
û

∑

x∈supp(X)

PX(x)PY |X(y|x)E[d(U, û)|X = x]

≥
∑

y∈Y

min
x̃∈supp(X)

PY |X(y|x̃)

inf
û

∑

x∈supp(X)

PX(x)E[d(U, û)|X = x]

=
∑

y∈Y

min
x̃∈supp(X)

PY |X(y|x̃)

(
inf
û

E[d(U, û)]

)
,

where the third equality follows from the Markov chain
U − X − Y . For the reverse direction, let U = X , X̂ =
supp(X), and

d(x, x̂) =

{
1

PX (x) , x = x̂,

0, x �= x̂.
(115)

Then

min
x̂∈supp(X)

E[d(X, x̂)] = min
x̂∈supp(X)

∑

x∈supp(X)

PX(x)d(x, x̂)

= min
x̂∈supp(X)

PX(x̂)d(x̂, x̂)

= 1, (116)

and for a given y ∈ Y ,

min
x̂∈supp(X)

∑

x∈supp(X)

PX(x)PY |X(y|x)d(x, x̂)

= min
x̂∈supp(X)

PY |X(y|x̂), (117)

which concludes the proof.

B. Proof of Equation (96)

Fix any distribution QY on Y . Then

exp{D∞(PX × QY ||PXY )}

= max
x,y:

PX(x)QY (y)>0

QY (y)

PY |X(y|x)

= max
y:QY (y)>0

QY (y)

min
x:PX(x)>0

PY |X(y|x)
.

If for every y ∈ Y there exists x ∈ supp(PX) such that
PY |X(y|x) = 0, then for any QY the above quantity is ∞.
By Theorem 15, Lc (X→Y ) is also ∞ in this case. Now
assume

∑
y∈Y minx:PX(x)>0 PY |X(y|x) > 0. We have

exp{D∞(PX × QY ||PXY )}

= max
y:QY (y)>0

QY (y)

min
x:PX (x)>0

PY |X(y|x)

≥
∑

y∈Y QY (y)
∑

y∈Y

min
x:PX(x)>0

PY |X(y|x)
.

Noting that
∑

y QY (y) = 1, we get infQY
D∞(PX ×

QY ||PXY )} ≥ Lc (X→Y ). One can readily verify that the
lower bound is achievable by setting

QY (y) =
minx:PX(x)>0 PY |X(y|x)∑

y′∈Y minx:PX (x)>0 PY |X(y0|x)
.

Remark 17: In the case of I∞(X ; Y ) (cf. (2)), one can
readily verify that

QY (y) =
maxx:PX(x)>0 PY |X(y|x)∑

y′∈Y maxx:PX(x)>0 PY |X(y0|x)
(118)

achieves the infimum in (5).

C. Proof of Corollary 5

In the following, assume X has full support.
1) The data processing inequality follows directly from the

definition.
2) The “if” direction is straightforward. The “only

if” direction follows from the fact that, for
each y, minx PY |X(y|x) ≤ PY (y). Thus,∑

y minx PY |X(y|x) = 1 ⇒ ∀y, minx PY |X(y|x) =
PY (y) ⇒ X and Y are independent.

3-5) The additivity property and the equality in 4) can be
readily verified. Example 14 illustrates 5).

Local-differential
6) privacy upper-bounds maximal cost leakage since:

1∑
y minx PY |X(y|x)

=

∑
y PY (y)

∑
y minx PY |X(y|x)

≤ max
y

PY (y)

minx PY |X(y|x)

≤ max
x,x′,y

PY |X(y|x0)

PY |X(y|x)
.

7) Convexity follows from the fact that minx PY |X(y|x) is
concave in PY |X , and (− log) is a non-increasing convex
function.
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D. Proof of Theorem 16

Without loss of generality, assume X and Y have full mar-
ginal support. To show Lrc(X→Y ) ≤ D∞(PX × PY ||PXY ),
fix any X̂ , d and y ∈ Y , and consider:

inf
û∈Û

E[d(U, û)|Y = y]

= inf
û∈Û

∑

u∈U

PU|Y (u|y)d(u, û)

= inf
û∈Û

∑

u∈U

∑

x∈X

PX|Y (x|y)PU|X (u|x)d(u, û)

= inf
û∈Û

∑

u∈U

∑

x∈X

PY |X(y|x)

PY (y)
PX(x)PU|X (u|x)d(u, û)

≥ inf
û∈Û

minx′ PY |X(y|x0)

PY (y)
·

∑

u∈U

∑

x∈X

PX(x)PU|X (u|x)d(u, û)

=
minx′ PY |X(y|x0)

PY (y)
inf
û∈Û

E[d(U, û)].

The reverse direction follows by using the same d as in (115).

E. Proof of Corollary 7

To show supPX
Lrc(X → Y ) ≤ Ldp(X → Y ), note

that PY (y) ≤ maxx PY |X(y|x). For the reverse direction,
consider the following. Let y⋆ be an element achieving the
max of Ldp. Let x0 ∈ argminx PY |X(y⋆|x) and x1 ∈
argmaxx PY |X(y⋆|x). Finally, for a given α > 0, let
PX(x0) = 1 − α and PX(x1) = α. Then,

sup
PX

Lrc(X→Y )

≥ log
PY (y⋆)

PY |X(y⋆|x0)

= log
(1 − α)PY |X(y⋆|x0) + αPY |X(y⋆|x1)

PY |X(y⋆|x0)

α→1−−−→ log
PY |X(y⋆|x1)

PY |X(y⋆|x0)
= Ldp(X → Y ). �
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